首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1782篇
  免费   69篇
  国内免费   2篇
  1853篇
  2022年   10篇
  2021年   23篇
  2020年   9篇
  2019年   17篇
  2018年   12篇
  2017年   23篇
  2016年   24篇
  2015年   48篇
  2014年   49篇
  2013年   119篇
  2012年   97篇
  2011年   103篇
  2010年   57篇
  2009年   54篇
  2008年   100篇
  2007年   85篇
  2006年   105篇
  2005年   90篇
  2004年   104篇
  2003年   106篇
  2002年   104篇
  2001年   37篇
  2000年   39篇
  1999年   22篇
  1998年   23篇
  1997年   20篇
  1996年   21篇
  1995年   24篇
  1994年   15篇
  1993年   15篇
  1992年   13篇
  1991年   21篇
  1990年   18篇
  1989年   17篇
  1988年   30篇
  1987年   20篇
  1986年   8篇
  1985年   22篇
  1984年   26篇
  1983年   17篇
  1982年   14篇
  1981年   14篇
  1980年   7篇
  1979年   13篇
  1978年   9篇
  1977年   9篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1972年   5篇
排序方式: 共有1853条查询结果,搜索用时 15 毫秒
91.

Background

Mutations in the integral membrane protein 2B [1], also known as BRI2 [2], a type II trans-membrane domain protein cause two autosomal dominant neurodegenerative diseases, Familial British and Danish Dementia [3]. In these conditions, accumulation of a C-terminal peptide (ABri and ADan) cleaved off from the mutated precursor protein by the pro-protein convertase furin [4], leads to amyloid deposition in the walls of blood vessels and parenchyma of the brain. Recent advances in the understanding of the generation of amyloid in Alzheimer''s disease has lead to the finding that BRI2 interacts with the Amyloid Precursor Protein (APP), decreasing the efficiency of APP processing to generate Aβ [5], [6], [7]. The interaction between the two precursors, APP and BRI2, and possibly between Aβ and ABri or ADan, could be important in influencing the rate of amyloid production or the tendency of these peptides to aggregate.

Methodology/Principal Findings

We have generated the first BRI2 Danish Knock-In (FDDKI) murine model of FDD, expressing the pathogenic decamer duplication in exon 6 of the BRI2 gene. FDDKI mice do not show any evident abnormal phenotype, with normal brain histology and no detectable amyloid deposition in blood vessel walls or parenchyma.

Conclusions/Significance

This new murine mouse model will be important to further understand the interaction between APP and BRI2, and to provide insights into the molecular basis of FDD.  相似文献   
92.
Amylin is a peptide hormone that is co-released with insulin from pancreatic β-cells following a meal. Intracerebroventricular (icv) administration of amylin (1–100 pmol), or an amylin agonist, salmon calcitonin, elicited dose-dependent thermogenic, tachycardic, and hyperthermic responses in urethane-anesthetized rats. Intravenous (iv) administration of higher doses of amylin (100 pmol–20 nmol) also induced similar responses, although the amplitudes of these responses were significantly smaller than those elicited by icv administration, suggesting the primary action of amylin to be in the brain. However, the iv administration of amylin induced the responses slightly faster than the icv injection, the former responses occurring <4 min and the latter, at 8–10 min, after the administration. The iv but not the icv injection of amylin increased the respiratory exchange ratio transiently (<20 min), though the thermogenic response lasted for a longer period after both injections, indicating a shift from mixed fuel to predominantly carbohydrate utilization in the initial phase of thermogenesis induced by the iv injection of amylin. The differences in substrate utilization and latency of the responses suggest that the actions of amylin include partly different targets when administered centrally and peripherally. Moreover, pretreatment with a β-adrenergic blocker, propranolol (5 mg kg−1, iv), blocked all responses elicited by either icv or iv administration of amylin, whereas ablation of the area postrema in the hindbrain did not influence the effects of icv-administered amylin. These results suggest the involvement of amylin in postprandial energy expenditure, mediated by peripheral β-adrenoceptors.  相似文献   
93.
Colorectal cancer (CRC) is one of the leading causes of cancer death in humans. In order to identify novel cancer-promoting genes in CRC, we here constructed a retroviral cDNA expression library from a CRC cell line RKO, and used it for a focus formation assay with mouse 3T3 fibroblasts, leading to the identification of 42 independent cDNAs. One of such cDNAs turned out to encode purinergic receptor P2Y, G-protein coupled, 2 (P2RY2). The oncogenic potential of P2RY2 was confirmed in vitro with the focus formation assay as well as soft agar-growth assay, and also in vivo with a tumorigenicity assay in nude mice. While our P2RY2 cDNA encodes a protein with two amino-acid substitutions compared to the reported one, we have confirmed that the wild-type P2RY2 has a strong transforming potential as well. These results indicate an unexpected role of P2RY2 in the carcinogenesis of human cancers.  相似文献   
94.

Background

It has recently been suggested that RhoA plays an important role in the enhancement of the Ca2+ sensitization of smooth muscle contraction. In the present study, a participation of RhoA-mediated Ca2+ sensitization in the augmented bronchial smooth muscle (BSM) contraction in a murine model of allergic asthma was examined.

Methods

Ovalbumin (OA)-sensitized BALB/c mice were repeatedly challenged with aerosolized OA and sacrificed 24 hours after the last antigen challenge. The contractility and RhoA protein expression of BSMs were measured by organ-bath technique and immunoblotting, respectively.

Results

Repeated OA challenge to sensitized mice caused a BSM hyperresponsiveness to acetylcholine (ACh), but not to high K+-depolarization. In α-toxin-permeabilized BSMs, ACh induced a Ca2+ sensitization of contraction, which is sensitive to Clostridium botulinum C3 exoenzyme, indicating that RhoA is implicated in this Ca2+ sensitization. Interestingly, the ACh-induced, RhoA-mediated Ca2+ sensitization was significantly augmented in permeabilized BSMs of OA-challenged mice. Moreover, protein expression of RhoA was significantly increased in the hyperresponsive BSMs.

Conclusion

These findings suggest that the augmentation of Ca2+ sensitizing effect, probably via an up-regulation of RhoA protein, might be involved in the enhanced BSM contraction in antigen-induced airway hyperresponsiveness.  相似文献   
95.
We investigated the expression levels of leptin receptors in the brain of ovariectomized (OVX) rats. The mean expression level of ob mRNA in adipose tissues of OVX rats was significantly (P < 0.01) lower than that in the SHAM operation group rats, and the mean body weight of OVX rats was significantly (P < 0.01) greater than that in the SHAM group rats. However, there were no differences between serum leptin concentrations in these two groups. The mean level of leptin receptor (OB-R) mRNA expression in the brain tissue and the mean level of long form type OB-R (OB-RL) mRNA expression in the hypothalamus of the OVX rats were significantly (P < 0.05) lower than those in the SHAM group rats. These changes were cancelled by supplementation with 17 beta-estradiol in OVX rats. These results suggested that not only changes in the expression level of ob mRNA in adipose tissue and the serum leptin concentration but also changes in the OB-R mRNA in the brain are involved in the body weight increase in OVX rats and that a decrease in OB-R makes transmission of signals to suppress the amount of food intake difficult, thus leading to an increase in body weight.  相似文献   
96.
11β-hydroxysteroid dehydrogenase (HSD11B) catalyzes the interconversion between active and inactive glucocorticoid, and is known to exist as two distinct isozymes: HSD11B1 and HSD11B2. A third HSD11B isozyme, HSD11B1L (SCDR10b), has recently been identified. Human HSD11B1L, which was characterized as a unidirectional NADP+-dependent cortisol dehydrogenase, appears to be specifically expressed in the brain. We previously reported that HSD11B1 and abundant HSD11B2 isozymes are expressed in neonatal pig testis and the Km for cortisol of NADP+-dependent dehydrogenase activity of testicular microsomes obviously differs from the same activity catalyzed by HSD11B1 from pig liver microsomes. Therefore, we hypothesized that the neonatal pig testis also expresses the third type of HSD11B isozyme, and we herein examined further evidence regarding the expression of HSD11B1L. (1) The inhibitory effects of gossypol and glycyrrhetinic acid on pig testicular microsomal NADP+-dependent cortisol dehydrogenase activity was clearly different from that of pig liver microsomes. (2) A highly conserved human HSD11B1L sequence was observed by RT-PCR in a pig testicular cDNA library. (3) mRNA, which contains the amplified sequence, was evaluated by real-time PCR and was most strongly expressed in pig brain, and at almost the same levels in the kidney as in the testis, but at lower levels in the liver. Based on these results, neonatal pig testis appears to express glycyrrhetinic acid-resistant HSD11B1L as a third HSD11B isozyme, and it may play a physiologically important role in cooperation with the abundantly expressed HSD11B2 isozyme in order to prevent Leydig cell apoptosis or GC-mediated suppression of testosterone production induced by high concentrations of activated GC in neonatal pig testis.  相似文献   
97.
Parasitic plants exchange various types of RNAs with their host plants, including mRNA, and small non-coding RNA. Among small non-coding RNAs, miRNA production is known to be induced at the haustorial interface. The induced miRNAs transfer to the host plant and activate secondary siRNA production to silence target genes in the host. In addition to interfacial transfer, long-distance movement of the small RNAs has also been known to mediate signaling and regulate biological processes. In this study, we tested the long-distance movement of trans-species small RNAs in a parasitic-plant complex. Small RNA-Seq was performed using a complex of a stem parasitic plant, Cuscuta campestris, and a host, Arabidopsis thaliana. In the host plant’s parasitized stem, genes involved in the production of secondary siRNA, AtSGS3 and AtRDR6, were upregulated, and 22-nt small RNA was enriched concomitantly, suggesting the activation of secondary siRNA production. Stem-loop RT-PCR and subsequent sequencing experimentally confirmed the mobility of the small RNAs. Trans-species mobile small RNAs were detected in the parasitic interface and also in distant organs. To clarify the mode of long-distance translocation, we examined whether C. campestris-derived small RNA moves long distances in A. thaliana sgs3 and rdr6 mutants or not. Mobility of C. campestris-derived small RNA in sgs3 and rdr6 mutants suggested the occurrence of direct long-distance transport without secondary siRNA production in the recipient plant.  相似文献   
98.
Appican produced by rat C6 glioma cells, the chondroitin sulfate (CS) proteoglycan form of the amyloid precursor protein, contains an E disaccharide, -GlcUA-GalNAc(4,6-O-disulfate)-, in its CS chain. In this study, the appican CS chain from rat C6 glioma cells was shown to specifically bind several growth/differentiation factors including midkine (MK) and pleiotrophin (PTN). In contrast, the appican CS from SH-SY5Y neuroblastoma cells contained no E disaccharide and showed no binding to either MK or PTN. These findings indicate that the E motif is essential in the interaction of the appican CS chain with growth/differentiation factors, and suggest that glial appican may mediate the regulation of neuronal cell adhesion and migration and/or neurite outgrowth.  相似文献   
99.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The accumulated evidence on the tumor-progressing roles of HB-EGF has suggested that HB-EGF-targeted cancer therapy is expected to be promising. However, the generation of neutralizing anti-HB-EGF monoclonal antibodies (mAbs) has proved difficult. To overcome this difficulty, we performed a hybridoma approach using mice from different genetic backgrounds, as well as different types of HB-EGF immunogens. To increase the number of hybridoma clones to screen, we used an electrofusion system to generate hybridomas and a fluorometric microvolume assay technology to screen anti-HB-EGF mAbs. We succeeded in obtaining neutralizing anti-HB-EGF mAbs, primarily from BALB/c and CD1 mice, and these were classified into 7 epitope bins based on their competitive binding to the soluble form of HB-EGF (sHB-EGF). The mAbs showed several epitope bin-dependent characteristics, including neutralizing and binding activity to human sHB-EGF, cross-reactivity to mouse/rat sHB-EGF and binding activity to the precursor form of HB-EGF. The neutralizing activity was also validated in colony formation assays. Interestingly, we found that the populations of mAb bins and the production rates of the neutralizing mAbs were strikingly different by mouse strain and by immunogen type. We succeeded in generating a variety of neutralizing anti-HB-EGF mAbs, including potent sHB-EGF neutralizers that may have potential as therapeutic agents for treating HB-EGF-dependent cancers. Our results also suggest that immunization approaches using different mouse strains and immunogen types affect the biological activity of individual neutralizing antibodies.  相似文献   
100.
Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein–protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca2 + concentration. The oligomerization of STIM1, which triggers extracellular Ca2 + influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca2 + concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca2 + concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca2 + concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca2 + influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca2 + loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca2 +-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号