首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   39篇
  2023年   2篇
  2022年   10篇
  2021年   17篇
  2020年   7篇
  2019年   8篇
  2018年   14篇
  2017年   13篇
  2016年   18篇
  2015年   33篇
  2014年   34篇
  2013年   43篇
  2012年   42篇
  2011年   36篇
  2010年   27篇
  2009年   28篇
  2008年   47篇
  2007年   40篇
  2006年   31篇
  2005年   36篇
  2004年   33篇
  2003年   22篇
  2002年   22篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有622条查询结果,搜索用时 15 毫秒
41.
Thioredoxin (TRX) catalyzes the reduction of disulfide bonds in proteins via the NADPH-dependent thioredoxin reductase system. Reducing the disulfide bonds of allergenic proteins in food by TRX lowers the allergenicity. We established in this study a method to prepare TRX-enriched extracts from the edible yeast, Saccharomyces cerevisiae, on a large and practical scale, with the objective of developing TRX-containing functional foods to mitigate food allergy. Treating with the yeast TRX-enriched extracts together with NADPH and yeast thioredoxin reductase enhanced the pepsin cleavage of β-lactoglobulin and ovomucoid (OM). We also examined whether yeast TRX can mitigate the allergenicity of OM by conducting immediate allergy tests on guinea pigs. The treatment with TRX reduced the anaphylactic symptoms induced by OM in these tests. These results indicate that yeast TRX was beneficial against food allergy, raising the possibility that yeast TRX-enriched extracts can be applied to food materials for mitigating food allergy.  相似文献   
42.
We used gametocidal (Gc) chromosomes 2C and 3C(SAT) to dissect barley 2H added to common wheat. The Gc chromosome induces chromosomal breakage resulting in chromosomal aberrations in the progeny of the 2H addition line of common wheat carrying the monosomic Gc chromosome. We conducted in situ hybridization to select plants carrying structurally rearranged aberrant 2H chromosomes and characterized them by sequential C-banding and in situ hybridization. We established 66 dissection lines of common wheat carrying single aberrant 2H chromosomes. The aberrant 2H chromosomes were of either deletion or translocation or complicated structural change. Their breakpoints were distributed in the short arm (2HS), centromere (2HC) and the long arm (2HL) at a rough 2HS/2HC/2HL ratio of 2:1:2. We conducted PCR analysis of the 66 dissection lines using 115 EST markers specific to chromosome 2H. Based on the PCR result, we constructed a physical or cytological map of chromosome 2H that were divided into 34 regions separated by the breakpoints of the aberrant 2H chromosomes. Forty-seven markers were present in 2HS and 68 in 2HL. We compared the 2H cytological map with a previously reported 2H genetic map using 44 markers that were used in common to construct both maps. The order of markers in the distal region was the same on both maps but that in the proximal region was somewhat contradictory between the two maps. We found that the markers distributed rather evenly in the genetic map were actually concentrated in the distal regions of both arms as revealed by the cytological map. We also recognized an EST-marker or gene-rich region in the 2HL interstitial region slightly to the telomere.  相似文献   
43.
44.
MOTIVATION: To resolve the high-dimensionality of the genetic network inference problem in the S-system model, a problem decomposition strategy has been proposed. While this strategy certainly shows promise, it cannot provide a model readily applicable to the computational simulation of the genetic network when the given time-series data contain measurement noise. This is a significant limitation of the problem decomposition, given that our analysis and understanding of the genetic network depend on the computational simulation. RESULTS: We propose a new method for inferring S-system models of large-scale genetic networks. The proposed method is based on the problem decomposition strategy and a cooperative coevolutionary algorithm. As the subproblems divided by the problem decomposition strategy are solved simultaneously using the cooperative coevolutionary algorithm, the proposed method can be used to infer any S-system model ready for computational simulation. To verify the effectiveness of the proposed method, we apply it to two artificial genetic network inference problems. Finally, the proposed method is used to analyze the actual DNA microarray data.  相似文献   
45.
Narawa T  Shimizu R  Takano S  Tsuda Y  Ono K  Yamada H  Itoh T 《Chirality》2005,17(8):444-449
Stereoselectivity of the human reduced folate carrier (RFC1) was examined in Caco-2 cells using methotrexate (l-amethopterin or l-MTX) and its antipode (d-amethopterin or d-MTX) as model substrates. The initial uptake rate of folic acid (FA) was concentration dependent, with a K(m) value of approximately 0.6 microM. The Eadie-Hofstee plot of the RFC1-mediated FA uptake revealed a single component for FA uptake into Caco-2 cells, demonstrating that only RFC1 is involved in FA uptake. l-MTX inhibited FA uptake in a competitive manner with a K(i) value of approximately 2 microM, similar to the K(m) value of l-MTX. d-MTX also competitively inhibited FA uptake with a K(i) value being approximately 120 microM, indicating that the affinity of d-MTX is ca. 60-fold less than that of l-MTX. The stereoselectivity of human RFC1 observed in the present study was consistent not only with the stereoselectivity of rabbit RFC1 observed in rabbit intestinal brush border membrane vesicles but also with the reported differences in oral absorption of amethopterin enantiomers in humans.  相似文献   
46.
The presence of a monosomic gametocidal chromosome (GC) in a barley chromosome addition line of common wheat generates structural aberrations in the barley chromosome as well as in the wheat chromosomes of gametes lacking the GC. A collection of structurally aberrant barley chromosomes is analogous to a panel of radiation hybrid (RH) mapping and is valuable for high-throughput physical mapping. We developed 90 common wheat lines (GC lines) containing aberrant barley 7H chromosomes induced by a gametocidal chromosome, 2C. DNAs isolated from these GC lines provided a panel of 7H chromosomal fragments in a wheat genetic background, comparable with RH mapping panels in mammals. We used this 7H GC panel and the methodology for RH mapping to physically map PCR-based barley markers, SSRs and AFLPs, onto chromosome 7H, relying on polymorphism between the 7H chromosome and the wheat genome. We call this method GC mapping. This study describes a novel adaptation and combination of methods of inducing chromosomal rearrangements to produce physical maps of markers. The advantages of the presented method are similar to RH mapping in that non-polymorphic markers can be used and the mapping panels can be relatively easily obtained. In addition, mapping results are cumulative when using the same mapping set with new markers. The GC lines will be available from the National Bioresources Project-KOMUGI (). Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
47.
Mano S 《Genetics》2005,171(4):2043-2050
An analytic expression of conditional expectation of transient gamete frequency, given that one of the two loci remains polymorphic, is obtained in terms of the diffusion process by calculating the moments of the distribution. Using this expression, a model where linkage disequilibrium is introduced by a single mutation is considered. The conditional expectation of the gamete frequency given that the locus with the mutant allele remains polymorphic is presented. The behavior is significantly different from the monotonic decrease observed in the deterministic model without random genetic drift.  相似文献   
48.
Appican produced by rat C6 glioma cells, the chondroitin sulfate (CS) proteoglycan form of the amyloid precursor protein, contains an E disaccharide, -GlcUA-GalNAc(4,6-O-disulfate)-, in its CS chain. In this study, the appican CS chain from rat C6 glioma cells was shown to specifically bind several growth/differentiation factors including midkine (MK) and pleiotrophin (PTN). In contrast, the appican CS from SH-SY5Y neuroblastoma cells contained no E disaccharide and showed no binding to either MK or PTN. These findings indicate that the E motif is essential in the interaction of the appican CS chain with growth/differentiation factors, and suggest that glial appican may mediate the regulation of neuronal cell adhesion and migration and/or neurite outgrowth.  相似文献   
49.
Oversulfated chondroitin sulfate E (CS-E) derived from squid cartilage exhibits intriguing biological activities, which appear to reflect the biological activities of mammalian CS chains containing the so-called E disaccharide unit [GlcAbeta1-3GalNAc(4,6-O-disulfate)]. Previously, we isolated novel tetra- and hexasaccharides containing a rare GlcA(3-O-sulfate) at the nonreducing end after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, squid cartilage CS-E was extensively digested with chondroitinase AC-II, which yielded five highly sulfated novel tetrasaccharides and two odd-numbered oligosaccharides (tri- and pentasaccharides) containing D-Glc. Their structures were determined by fast atom bombardment mass spectrometry and (1)H NMR spectroscopy. The results revealed an internal GlcA(3-O-sulfate) residue for all the novel tetrasaccharide sequences, which rendered the oligosaccharides resistant to the enzyme. The results suggest that GlcA(3-O-sulfate) units are not clustered but rather interspersed in the CS-E polysaccahride chains, being preferentially located in the highly sulfated sequences. The predominant structure on the nearest nonreducing side of a GlcA(3-O-sulfate) residue was GalNAc(4-O-sulfate) (80%), whereas that on the reducing side was GalNAc(4,6-O-disulfate) (59%). The structural variety in the vicinity of the GlcA(3-O-sulfate) residue might represent the substrate specificity of the unidentified chondroitin GlcA 3-O-sulfotransferase. The results also revealed a trisaccharide and a pentasaccahride sequence, both of which contained a beta-d-Glc branch at the C6 position of the constituent GalNAc residue. Approximately 5 mol % of all disaccharide units were substituted by Glc in the CS-E preparation used.  相似文献   
50.
We have shown that over-sulfated chondroitin sulfate/dermatan sulfate (CS/DS) chains from various marine organisms exhibit growth factor binding activities and neurite outgrowth-promoting activities in embryonic mouse hippocampal neurons in vitro. In this study we demonstrated that CS/DS hybrid chains purified from embryonic pig brain displayed marked neuritogenic activity and growth factor binding activities toward fibroblast growth factor 2 (FGF2), FGF10, FGF18, pleiotrophin, and midkine, all of which exhibit neuroregulatory activities in the brain. In contrast, the CS/DS preparation from adult pig brain showed considerably less activity to bind these growth factors and no neuritogenic activity. Structural analysis indicated that the average size of the CS/DS chains was similar (40 kDa) between these two preparations, but the disaccharide compositions differed considerably, with a significant proportion of l-iduronic acid (IdoUA)-containing disaccharides (8 approximately 9%) in the CS/DS chains from embryos but not in those from adults (<1%). Interestingly, both neurite outgrowth-promoting activity and growth factor binding activities of the CS/DS chains from embryos were abolished by digestion not only with chondroitinase ABC but also with chondroitinase B, suggesting that the IdoUA-containing motifs are essential for these activities. These findings imply that the temporal expression of CS/DS hybrid structures containing both GlcUA and IdoUA and binding activities toward various growth factors play important roles in neurogenesis in the early stages of the development of the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号