全文获取类型
收费全文 | 741篇 |
免费 | 42篇 |
专业分类
783篇 |
出版年
2023年 | 3篇 |
2022年 | 14篇 |
2021年 | 20篇 |
2020年 | 15篇 |
2019年 | 13篇 |
2018年 | 12篇 |
2017年 | 25篇 |
2016年 | 24篇 |
2015年 | 29篇 |
2014年 | 34篇 |
2013年 | 47篇 |
2012年 | 67篇 |
2011年 | 63篇 |
2010年 | 38篇 |
2009年 | 32篇 |
2008年 | 49篇 |
2007年 | 34篇 |
2006年 | 43篇 |
2005年 | 37篇 |
2004年 | 22篇 |
2003年 | 28篇 |
2002年 | 28篇 |
2001年 | 15篇 |
2000年 | 20篇 |
1999年 | 7篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 6篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 5篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1987年 | 6篇 |
1986年 | 3篇 |
1985年 | 5篇 |
1984年 | 7篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1979年 | 5篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1973年 | 1篇 |
1972年 | 3篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1964年 | 1篇 |
排序方式: 共有783条查询结果,搜索用时 15 毫秒
21.
Hexagonal Boron Nitride‐Based Electrolyte Composite for Li‐Ion Battery Operation from Room Temperature to 150 °C 下载免费PDF全文
Marco‐Tulio F. Rodrigues Kaushik Kalaga Hemtej Gullapalli Ganguli Babu Arava Leela Mohana Reddy Pulickel M. Ajayan 《Liver Transplantation》2016,6(12)
Batteries for high temperature applications capable of withstanding over 60 °C are still dominated by primary cells. Conventional rechargeable energy storage technologies which have exceptional performance at ambient temperatures employ volatile electrolytes and soft separators, resulting in catastrophic failure under heat. A composite electrolyte/separator is reported that holds the key to extend the capability of Li‐ion batteries to high temperatures. A stoichiometric mixture of hexagonal boron nitride, piperidinium‐based ionic liquid, and a lithium salt is formulated, with ionic conductivity reaching 3 mS cm?1, electrochemical stability up to 5 V and extended thermal stability. The composite is used in combination with conventional electrodes and demonstrates to be stable for over 600 cycles at 120 °C, with a total capacity fade of less than 3%. The ease of formulation along with superior thermal and electrochemical stability of this system extends the use of Li‐ion chemistries to applications beyond consumer electronics and electric vehicles. 相似文献
22.
Joo‐Yong Lee Waixing Tang Esther Wong Ya‐Sheng Gao Udai B Pandey Susmita Kaushik Emily Tresse Jianrong Lu J Paul Taylor Ana Maria Cuervo Tso‐Pang Yao 《The EMBO journal》2010,29(5):969-980
Autophagy is primarily considered a non‐selective degradation process induced by starvation. Nutrient‐independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin‐binding deacetylase, histone deacetylase‐6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin‐dependent, actin‐remodelling machinery, which in turn assembles an F‐actin network that stimulates autophagosome–lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build‐up, and neurodegeneration. Remarkably, HDAC6 and F‐actin assembly are completely dispensable for starvation‐induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome–lysosome fusion. 相似文献
23.
Patel KP Mayhan WG Bidasee KR Zheng H 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,300(2):R311-R320
Studies have shown that the superoxide mechanism is involved in angiotensin II (ANG II) signaling in the central nervous system. We hypothesized that ANG II activates sympathetic outflow by stimulation of superoxide anion in the paraventricular nucleus (PVN) of streptozotocin (STZ)-induced diabetic rats. In α-chloralose- and urethane-anesthetized rats, microinjection of ANG II into the PVN (50, 100, and 200 pmol) produced dose-dependent increases in renal sympathetic nerve activity (RSNA), arterial pressure (AP), and heart rate (HR) in control and STZ-induced diabetic rats. There was a potentiation of the increase in RSNA (35.0 ± 5.0 vs. 23.0 ± 4.3%, P < 0.05), AP, and HR due to ANG II type I (AT(1)) receptor activation in diabetic rats compared with control rats. Blocking endogenous AT(1) receptors within the PVN with AT(1) receptor antagonist losartan produced significantly greater decreases in RSNA, AP, and HR in diabetic rats compared with control rats. Concomitantly, there were significant increases in mRNA and protein expression of AT(1) receptor with increased superoxide levels and expression of NAD(P)H oxidase subunits p22(phox), p47(phox), and p67(phox) in the PVN of rats with diabetes. Pretreatment with losartan (10 mg·kg(-1)·day(-1) in drinking water for 3 wk) significantly reduced protein expression of NAD(P)H oxidase subunits (p22(phox) and p47(phox)) in the PVN of diabetic rats. Pretreatment with adenoviral vector-mediated overexpression of human cytoplasmic superoxide dismutase (AdCuZnSOD) within the PVN attenuated the increased central responses to ANG II in diabetes (RSNA: 20.4 ± 0.7 vs. 27.7 ± 2.1%, n = 6, P < 0.05). These data support the concept that superoxide anion contributes to an enhanced ANG II-mediated signaling in the PVN involved with the exaggerated sympathoexcitation in diabetes. 相似文献
24.
Manish Singh Kaushik Meenakshi Srivastava Anumeha Singh Arun Kumar Mishra 《World journal of microbiology & biotechnology》2017,33(8):158
Iron deficiency ends up into several unavoidable consequences including damaging oxidative stress in cyanobacteria. NtcA is a global nitrogen regulator controls wide range of metabolisms in addition to regulation of nitrogen metabolism. In present communication, NtcA based regulation of iron homeostasis, ROS production and cellular phenotype under iron deficiency in Anabaena 7120 has been investigated. NtcA regulates the concentration dependent iron uptake by controlling the expression of furA gene. NtcA also regulated pigment synthesis and phenotypic alterations in Anabaena 7120. A significant increase in ROS production and corresponding reduction in the activities of antioxidative enzymes (SOD, CAT, APX and GR) in CSE2 mutant strain in contrast to wild type Anabaena 7120 also suggested the possible involvement of NtcA in protection against oxidative stress in iron deficiency. NtcA has no impact on the expression of furB and furC in spite of presence of consensus NtcA binding site (NBS) and ?10 boxes in their promoter. NtcA also regulates the thylakoid arrangement as well as related photosynthetic and respiration rates under iron deficiency in Anabaena 7120. Overall results suggested that NtcA regulates iron acquisition and in turn protect Anabaena cells from the damaging effects of oxidative stress induced under iron deficiency. 相似文献
25.
Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase 总被引:75,自引:0,他引:75
Vickers C Hales P Kaushik V Dick L Gavin J Tang J Godbout K Parsons T Baronas E Hsieh F Acton S Patane M Nichols A Tummino P 《The Journal of biological chemistry》2002,277(17):14838-14843
Human angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a zinc metalloprotease whose closest homolog is angiotensin I-converting enzyme. To begin to elucidate the physiological role of ACE2, ACE2 was purified, and its catalytic activity was characterized. ACE2 proteolytic activity has a pH optimum of 6.5 and is enhanced by monovalent anions, which is consistent with the activity of ACE. ACE2 activity is increased approximately 10-fold by Cl(-) and F(-) but is unaffected by Br(-). ACE2 was screened for hydrolytic activity against a panel of 126 biological peptides, using liquid chromatography-mass spectrometry detection. Eleven of the peptides were hydrolyzed by ACE2, and in each case, the proteolytic activity resulted in removal of the C-terminal residue only. ACE2 hydrolyzes three of the peptides with high catalytic efficiency: angiotensin II () (k(cat)/K(m) = 1.9 x 10(6) m(-1) s(-1)), apelin-13 (k(cat)/K(m) = 2.1 x 10(6) m(-1) s(-1)), and dynorphin A 1-13 (k(cat)/K(m) = 3.1 x 10(6) m(-1) s(-1)). The ACE2 catalytic efficiency is 400-fold higher with angiotensin II () as a substrate than with angiotensin I (). ACE2 also efficiently hydrolyzes des-Arg(9)-bradykinin (k(cat)/K(m) = 1.3 x 10(5) m(-1) s(-1)), but it does not hydrolyze bradykinin. An alignment of the ACE2 peptide substrates reveals a consensus sequence of: Pro-X((1-3 residues))-Pro-Hydrophobic, where hydrolysis occurs between proline and the hydrophobic amino acid. 相似文献
26.
27.
Our objective is to understand the low metabolic utilization of dietary carbohydrates in fish. We compared the regulation of gluconeogenic enzymes at a molecular level in two fish species, the common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata), known to be relatively tolerant to dietary carbohydrates. After cloning of partial cDNA sequences for three key gluconeogenic enzymes (glucose-6-phosphatase (G6Pase), fructose biphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) in the two species, we analyzed gene expressions of these enzymes 6 and 24 h after feeding with (20%) or without carbohydrates. Our data show that there is at least one gluconeogenic enzyme strongly regulated (decreased expression after feeding) in the two fish species, i.e. the PEPCK for common carp and G6Pase/FBPase for gilthead seabream. In these fish species, the regulation seems to be similar to the mammals at least at the molecular level. 相似文献
28.
29.
Antibiotics increase the frequency of resistant bacteria by providing them a competitive advantage over sensitive strains. Here, we develop a versatile assay for differential chemical inhibition of competing microbial strains, and use it to identify compounds that preferentially inhibit tetracycline-resistant relative to sensitive bacteria, thus "inverting" selection for resistance. Our assay distinguishes compounds selecting directly against specific resistance mechanisms and compounds whose selection against resistance is based on their physiological interaction with tetracycline and is more general with respect to resistance mechanism. A pilot screen indicates that both types of selection-inverting compounds are secreted by soil microbes, suggesting that nature has evolved a repertoire of chemicals that counteracts antibiotic resistance. Finally, we show that our assay can more generally permit simple, direct screening for drugs based on their differential activity against different strains or targets. 相似文献
30.