首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6376篇
  免费   585篇
  国内免费   666篇
  2024年   20篇
  2023年   72篇
  2022年   231篇
  2021年   395篇
  2020年   295篇
  2019年   307篇
  2018年   321篇
  2017年   223篇
  2016年   296篇
  2015年   440篇
  2014年   544篇
  2013年   493篇
  2012年   616篇
  2011年   547篇
  2010年   342篇
  2009年   333篇
  2008年   359篇
  2007年   289篇
  2006年   226篇
  2005年   199篇
  2004年   157篇
  2003年   159篇
  2002年   143篇
  2001年   101篇
  2000年   91篇
  1999年   65篇
  1998年   37篇
  1997年   40篇
  1996年   38篇
  1995年   46篇
  1994年   37篇
  1993年   24篇
  1992年   29篇
  1991年   22篇
  1990年   21篇
  1989年   15篇
  1988年   8篇
  1987年   8篇
  1986年   10篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1950年   1篇
排序方式: 共有7627条查询结果,搜索用时 15 毫秒
81.
基因编辑技术发展迅速,但对应的检测方法较少。为寻找创建基因编辑作物适用的检测方法,以 PL3 基因编辑水稻编辑位点为靶标,有效设计了焦磷酸测序的扩增引物及测序引物,并进行有效性检测,分别利用Sequence to Analyze等程序以及SNP和AQ两种模式完成了对PL3 基因的定性和定量检测试验,建立了 PL3 基因编辑水稻编辑位点焦磷酸测序检测方法。结果表明,基于焦磷酸测序技术可以通过检测编辑位点从而将基因编辑型水稻与野生型水稻进行区分。与常规的转基因检测方法相比,该检测方法具有较好的准确性、高效性及高灵敏度等优点,在基因编辑型水稻编辑位点定性和定量检测分析方面具有很好的应用前景。  相似文献   
82.
Tian  Xin-Yue  He  Dong-Dong  Bai  Shuang  Zeng  Wen-Zhi  Wang  Zheng  Wang  Mo  Wu  Liang-Quan  Chen  Zhi-Chang 《Plant and Soil》2021,460(1-2):1-30
Plant and Soil - Phytoremediation of soil contaminated by trace elements is a technology using plants and microorganisms to sequester, inactivate, or extract contaminants from the soil. The...  相似文献   
83.
Background: Triple-negative breast cancer (TNBC) is a refractory subtype of breast cancer, 25–30% of which have dysregulation in the PI3K/AKT pathway. The present study investigated the anticancer effect of erianin on TNBC cell line and its underlying mechanism.Methods: After treatment with erianin, MTT assay was employed to determine the MDA-MB-231 and EFM-192A cell proliferation, the nucleus morphological changes were observed by DAPI staining. The cell cycle and apoptotic proportion were detected by flow cytometry. Western blot was performed to determine the cell cycle and apoptosis-related protein expression and PI3K pathways. Finally, the antiproliferative activity of erianin was further confirmed by adding or not adding PI3K agonists SC79.Results: Erianin inhibited the proliferation of MDA-MB-231 and EFM-192A cells in a dose-dependent manner, the IC50 were 70.96 and 78.58 nM, respectively. Erianin could cause cell cycle arrest at the G2/M phase, and the expressions of p21 and p27 were up-regulated, while the expressions of CDK1 and Cyclin B1 were down-regulated. Erianin also induced apoptosis via the mitochondrial pathway, with the up-regulation of the expression of Cyto C, PARP, Bax, active form of Caspase-3, and Caspase-9. Furthermore, p-PI3K and p-Akt expression were down-regulated by erianin. After co-incubation with SC79, the cell inhibition rate of erianin was decreased, which further confirmed that the attenuated PI3K/Akt pathway was relevant to the pro-apoptotic effect of erianin.Conclusions: Erianin can inhibit the proliferation of TNBC cells and induce cell cycle arrest and apoptosis, which may ascribe to the abolish the activation of the PI3K/Akt pathway.  相似文献   
84.
Immunotherapy based on genetic modification of T cells has played an important role in the treatment of tumors and viral infections. Moreover, adenoviral vectors engineered with improved safety due to their inability to integrate into the host genome have been key in the clinical application of T cell therapy. However, the commonly used adenoviral vector Ad5 exhibits low efficiency of infection of human T cells and the details of the intracellular trafficking pathway of adenoviral vectors in human primary T cells remains unclear. Resolution of these issues will depend on successful modification of the adenoviral vector. To this end, here we describe the successful establishment of a simple and efficient method for editing adenoviral vectors in vitro using the CRISPR-Cas9 gene editing system to target the adenoviral fiber gene. Electronic supplementary materialThe online version of this article (10.1007/s12088-020-00905-3) contains supplementary material, which is available to authorized users.  相似文献   
85.
Yang  Xiao  Zhang  Yanshuang  Geng  Keyi  Yang  Ke  Shao  Jiaxiang  Xia  Weiliang 《Cellular and molecular neurobiology》2021,41(6):1203-1215

Sirtuin 3 (Sirt3) is a member of the Sirtuin family proteins and known to regulate multiple physiological processes such as metabolism and aging. As stroke is an aging-related disease, in this work, we attempt to examine the role and potential mechanism of Sirt3 in regulating ischemic stroke by using a permanent middle cerebral artery occlusion (pMCAO) model in wild type (WT) and Sirt3 knockout (KO) mice, coupled with oxygen glucose deprivation (OGD) experiments in cultured primary astrocytes. Sirt3 deficiency aggravated neuronal cell apoptosis and neurological deficits after brain ischemia. In addition, Sirt3 KO mice showed more severe blood–brain barrier (BBB) disruption and inflammatory responses compared with WT group in the acute phase. Furthermore, specific overexpression of Sirt3 in astrocytes by injecting glial fibrillary acidic protein (GFAP)::Sirt3 virus in ischemic region showed protective effect against stroke-induced damage. Mechanistically, Sirt3 could regulate vascular endothelial growth factor (VEGF) expression by inhibiting hypoxia inducible factor-1α (HIF-1α) signaling after ischemia (OGD). Our results have shown that Sirt3 plays a protective role in ischemic stroke via regulating HIF-1α/VEGF signaling in astrocytes, and reversal of the Sirt3 expression at the acute phase could be a worthy direction for stroke therapy.

  相似文献   
86.
Shao  Xiao  Liu  Zhaozheng  Liu  Shanshan  Lin  Na  Deng  Yue 《Molecular and cellular biochemistry》2021,476(4):1783-1795
Molecular and Cellular Biochemistry - Non-coding RNAs (ncRNAs) have shown to act as crucial mediators in atherosclerosis (AS) development. The purpose of our study was to explore the role of...  相似文献   
87.
Liu  Xia  Ruan  Zhi  Shao  Xing-cheng  Feng  Hong-xuan  Wu  Lei  Wang  Wei  Wang  Hong-min  Mu  Hong-yan  Zhang  Ru-jun  Zhao  Wei-min  Zhang  Hai-yan  Zhang  Nai-xia 《Neurochemical research》2021,46(3):686-698

28-O-caffeoyl betulin (B-CA) has been demonstrated to reduce the cerebral infarct volume caused by transient middle cerebral artery occlusion (MCAO) injury. B-CA is a novel derivative of naturally occurring caffeoyl triterpene with little information associated with its pharmacological target(s). To date no data is available regarding the effect of B-CA on brain metabolism. In the present study, a 1H-NMR-based metabolomics approach was applied to investigate the therapeutic effects of B-CA on brain metabolism following MCAO in rats. Global metabolic profiles of the cortex in acute period (9 h after focal ischemia onset) after MCAO were compared between the groups (sham; MCAO?+?vehicle; MCAO?+?B-CA). MCAO induced several changes in the ipsilateral cortex of ischemic rats, which consequently led to the neuronal damage featured with the downregulation of NAA, including energy metabolism dysfunctions, oxidative stress, and neurotransmitter metabolism. Treatment with B-CA showed statistically significant rescue effects on the ischemic cortex of MCAO rats. Specifically, treatment with B-CA ameliorated the energy metabolism dysfunctions (back-regulating the levels of succinate, lactate, BCAAs, and carnitine), oxidative stress (upregulating the level of glutathione), and neurotransmitter metabolism disturbances (back-regulating the levels of γ-aminobutyric acid and acetylcholine) associated with the progression of ischemic stroke. With the administration of B-CA, the levels of three phospholipid related metabolites (O-phosphocholine, O-phosphoethanolamine, sn-glycero-3-phosphocholine) and NAA improved significantly. Overall, our findings suggest that treatment with B-CA may provide neuroprotection by augmenting the metabolic changes observed in the cortex following MCAO in rats.

  相似文献   
88.
Sun  Xiaowen  Shao  Chuang  Chen  Ling  Jin  Xinmeng  Ni  Hong 《Journal of Plant Growth Regulation》2021,40(4):1674-1686

Phosphate-solubilizing bacteria (PSB) are important plant growth-promoting rhizobacteria that can increase soil fertility through the solubilization of insoluble inorganic phosphate and organophosphorus. In this study, a PSB, Burkholderia gladioli MEL01, was isolated and identified from rice–wheat rotation rhizosphere soil. MEL01 had an excellent phosphate-solubilizing capacity (reaching 107.69 mg/L) toward insoluble inorganic phosphate rock phosphate. HPLC analysis revealed that the mechanism of phosphate solubilization of MEL01 was probably due to secreted oxalic acid and gluconic acid transformation of phosphate from insoluble to soluble. MEL01 also exhibited 4030 U/L specific chitosanase activity when cultured with chitosan fermentation medium. Interestingly, the chitosan hydrolysis product chitooligosaccharide could significantly enhance the MEL01 phosphate-solubilizing capacity. Pot experiments showed that MEL01 chitosan medium fermentation liquor (MCMFL) could promote improvement of soil available phosphorus and pakchoi growth when supplemented with phosphate rock phosphate as the phosphate fertilizer. In addition, pot experiments demonstrated that MCMFL could also promote the growth of wheat, which could decrease the amount of compound fertilizer used. Microbial diversity analysis showed that the genera Pseudomonas, Burkholderia, Mycoplana, and Cellvibrio were enriched, which might participate in synergetic phosphate solubilization. Therefore, after fermentation with chitosan and fertilization with rock phosphates, MEL01 has potential as a phosphate biofertilizer in ecological agricultural production.

  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号