首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23231篇
  免费   1833篇
  国内免费   1912篇
  26976篇
  2024年   69篇
  2023年   291篇
  2022年   760篇
  2021年   1308篇
  2020年   887篇
  2019年   1048篇
  2018年   1019篇
  2017年   755篇
  2016年   1048篇
  2015年   1431篇
  2014年   1741篇
  2013年   1866篇
  2012年   2077篇
  2011年   1940篇
  2010年   1201篇
  2009年   1086篇
  2008年   1231篇
  2007年   1086篇
  2006年   917篇
  2005年   797篇
  2004年   613篇
  2003年   585篇
  2002年   475篇
  2001年   344篇
  2000年   344篇
  1999年   338篇
  1998年   199篇
  1997年   175篇
  1996年   182篇
  1995年   178篇
  1994年   162篇
  1993年   116篇
  1992年   160篇
  1991年   113篇
  1990年   114篇
  1989年   78篇
  1988年   54篇
  1987年   46篇
  1986年   36篇
  1985年   36篇
  1984年   17篇
  1983年   15篇
  1982年   19篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1966年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models.  相似文献   
992.
Mild, mitochondrial uncoupling increases energy expenditure and can reduce the generation of reactive oxygen species (ROS). Activation of cellular, adaptive stress response pathways can result in an enhanced capacity to reduce oxidative damage. Together, these strategies target energy imbalance and oxidative stress, both underlying factors of obesity and related conditions such as type 2 diabetes. Here we describe a metabolomics-driven effort to uncover the anti-obesity mechanism(s) of xanthohumol (XN), a prenylated flavonoid from hops. Metabolomics analysis of fasting plasma from obese, Zucker rats treated with XN revealed decreases in products of dysfunctional fatty acid oxidation and ROS, prompting us to explore the effects of XN on muscle cell bioenergetics. At low micromolar concentrations, XN acutely increased uncoupled respiration in several different cell types, including myocytes. Tetrahydroxanthohumol also increased respiration, suggesting electrophilicity did not play a role. At higher concentrations, XN inhibited respiration in a ROS-dependent manner. In myocytes, time course metabolomics revealed acute activation of glutathione recycling and long term induction of glutathione synthesis as well as several other changes indicative of short term elevated cellular stress and a concerted adaptive response. Based on these findings, we hypothesize that XN may ameliorate metabolic syndrome, at least in part, through mitochondrial uncoupling and stress response induction. In addition, time course metabolomics appears to be an effective strategy for uncovering metabolic events that occur during a stress response.  相似文献   
993.
The promyelocytic leukemia protein is a well known tumor suppressor, but its role in metabolism is largely unknown. Mice with a deletion in the gene for PML (KO mice) exhibit altered gene expression in liver, adipose tissue, and skeletal muscle, an accelerated rate of fatty acid metabolism, abnormal glucose metabolism, constitutive AMP-activating kinase (AMPK) activation, and insulin resistance in skeletal muscle. Last, an increased rate of energy expenditure protects PML KO mice from the effects of obesity induced by a Western diet. Collectively, our study uncovers a previously unappreciated role of PML in the regulation of metabolism and energy balance in mice.  相似文献   
994.
Peroxiredoxins (Prxs) detoxify peroxides and modulate H2O2-mediated cell signaling in normal and numerous pathophysiological contexts. The typical 2-Cys subclass of Prxs (human Prx1–4) utilizes a Cys sulfenic acid (Cys-SOH) intermediate and disulfide bond formation across two subunits during catalysis. During oxidative stress, however, the Cys-SOH moiety can react with H2O2 to form Cys sulfinic acid (Cys-SO2H), resulting in inactivation. The propensity to hyperoxidize varies greatly among human Prxs. Mitochondrial Prx3 is the most resistant to inactivation, but the molecular basis for this property is unknown. A panel of chimeras and Cys variants of Prx2 and Prx3 were treated with H2O2 and analyzed by rapid chemical quench and time-resolved electrospray ionization-TOF mass spectrometry. The latter utilized an on-line rapid-mixing setup to collect data on the low seconds time scale. These approaches enabled the first direct observation of the Cys-SOH intermediate and a putative Cys sulfenamide (Cys-SN) for Prx2 and Prx3 during catalysis. The substitution of C-terminal residues in Prx3, residues adjacent to the resolving Cys residue, resulted in a Prx2-like protein with increased sensitivity to hyperoxidation and decreased ability to form the intermolecular disulfide bond between subunits. The corresponding Prx2 chimera became more resistant to hyperoxidation. Taken together, the results of this study support that the kinetics of the Cys-SOH intermediate is key to determine the probability of hyperoxidation or disulfide formation. Given the oxidizing environment of the mitochondrion, it makes sense that Prx3 would favor disulfide bond formation as a protection mechanism against hyperoxidation and inactivation.  相似文献   
995.
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2′-O-methyladenosine 3′,5′-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.  相似文献   
996.
Physiological and molecular determinants of embryo implantation   总被引:1,自引:0,他引:1  
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo–uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.  相似文献   
997.
Candidatus Portiera aleyrodidarum” is the primary endosymbiont of whiteflies. We report two complete genome sequences of this bacterium from the worldwide invasive B and Q biotypes of the whitefly Bemisia tabaci. Differences in the two genome sequences may add insights into the complex differences in the biology of both biotypes.  相似文献   
998.
999.
1000.
The high accumulation of a recombinant protein in rice endosperm causes endoplasmic reticulum (ER) stress and in turn dramatically affects endogenous storage protein expression, protein body morphology and seed phenotype. To elucidate the molecular mechanisms underlying these changes in transgenic rice seeds, we analyzed the expression profiles of endogenous storage proteins, ER stress-related and programmed cell death (PCD)-related genes in transgenic lines with different levels of Oryza sativa recombinant alpha antitrypsin (OsrAAT) expression. The results indicated that OsrAAT expression induced the ER stress and that the strength of the ER stress was dependent on OsrAAT expression levels. It in turn induced upregulation of the expression of the ER stress response genes and downregulation of the expression of the endogenous storage protein genes in rice endosperm. Further experiments showed that the ER stress response upregulated the expression of PCD-related genes to disturb the rice endosperm development and induced pre-mature PCD. As consequence, it resulted in decrease of grain weight and size. The mechanisms for the detriment seed phenotype in transgenic lines with high accumulation of the recombinant protein were elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号