全文获取类型
收费全文 | 57869篇 |
免费 | 17762篇 |
国内免费 | 4177篇 |
专业分类
79808篇 |
出版年
2024年 | 115篇 |
2023年 | 623篇 |
2022年 | 1294篇 |
2021年 | 2261篇 |
2020年 | 3315篇 |
2019年 | 5160篇 |
2018年 | 5104篇 |
2017年 | 5040篇 |
2016年 | 5504篇 |
2015年 | 5978篇 |
2014年 | 6193篇 |
2013年 | 6642篇 |
2012年 | 4922篇 |
2011年 | 4315篇 |
2010年 | 4780篇 |
2009年 | 3325篇 |
2008年 | 2471篇 |
2007年 | 1835篇 |
2006年 | 1572篇 |
2005年 | 1453篇 |
2004年 | 1248篇 |
2003年 | 1111篇 |
2002年 | 1002篇 |
2001年 | 775篇 |
2000年 | 668篇 |
1999年 | 598篇 |
1998年 | 328篇 |
1997年 | 305篇 |
1996年 | 266篇 |
1995年 | 203篇 |
1994年 | 199篇 |
1993年 | 132篇 |
1992年 | 196篇 |
1991年 | 160篇 |
1990年 | 156篇 |
1989年 | 112篇 |
1988年 | 72篇 |
1987年 | 48篇 |
1986年 | 59篇 |
1985年 | 57篇 |
1984年 | 34篇 |
1983年 | 41篇 |
1982年 | 27篇 |
1981年 | 20篇 |
1980年 | 10篇 |
1979年 | 21篇 |
1978年 | 6篇 |
1977年 | 10篇 |
1976年 | 9篇 |
1975年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
Pollen quantity limitation has been widely recognized as one of the main causes of plant reproductive failure in nature. However, its negative effects on fruit and seed production have been often confounded with those of low pollen quality (i.e. low conspecific pollen viability and/or slow pollen tube growth rate). The lack of differentiation between these two aspects of pollen limitation has resulted not only in a potential overestimation of the incidence of pollen quantity limitation but has led to a poor understanding of the factors and mechanisms that affect pollen quality limitation. Knowledge of the relative importance and underlying causes of both aspects of pollen limitation (quantity and quality) is required to fully understand the ecological and evolutionary consequences of pollen limitation in natural populations. Co‐flowering community context (e.g. species richness and conspecific density), in particular, can be an important driver of overall pollen limitation. However, how pollen quantity and quality limitation vary separately with the community context has not previously been examined, even though they may vary differently as they arise from different mechanisms, e.g. insect visitation rate versus inbreeding depression. Here we evaluate the effect of co‐flowering diversity and conspecific density on the relative importance of pollen quantity and quality limitation for Mimulus guttatus pre‐zygotic reproduction (i.e. pollen tube success) at serpentine seeps in California over two years. We found overall pollen limitation of pre‐zygotic reproductive success at all seeps regardless of the co‐flowering context. However, plants in high‐diversity/low‐ conspecific density communities were mostly limited by pollen quantity, whereas plants in low‐diversity/high‐conspecific density ones experienced stronger quality limitation – a pattern that was consistent across years. These results not only highlight the importance of conducting comprehensive studies on pollen limitation that evaluate both, its quantity and quality aspects, but are the first to show how their relative contribution to overall pollen limitation can vary with extrinsic factors such as the co‐flowering community context. 相似文献
992.
MATTI WAHLSTEN NATALIA BATTCHIKOVA ATEEQ UR REHMAN IMRE VASS MAARIT KARONEN JARI SINKKONEN PERTTU PERMI KAARINA SIVONEN EVA‐MARI ARO YAGUT ALLAHVERDIYEVA 《Plant, cell & environment》2014,37(6):1371-1381
Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC 6803 cells. After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non‐peptide structure. We propose that M22 possesses a dual‐action mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases. 相似文献
993.
994.
Aude Tixier Eric Badel Jerome Franchel Wassim Lakhal Nathalie Leblanc‐Fournier Bruno Moulia Jean‐Louis Julien 《Physiologia plantarum》2014,150(2):225-237
Inter‐organ communication is essential for plants to coordinate development and acclimate to mechanical environmental fluctuations. The aim of this study was to investigate long‐distance signaling in trees. We compared on young poplars the short‐term effects of local flame wounding and of local stem bending for two distal responses: (1) stem primary growth and (2) the expression of mechanoresponsive genes in stem apices. We developed a non‐contact measurement method based on the analysis of apex images in order to measure the primary growth of poplars. The results showed a phased stem elongation with alternating nocturnal circumnutation phases and diurnal growth arrest phases in Populus tremula × alba clone INRA 717‐1B4. We applied real‐time polymerase chain reaction (RT‐PCR) amplifications in order to evaluate the PtaZFP2, PtaTCH2, PtaTCH4, PtaACS6 and PtaJAZ5 expressions. The flame wounding inhibited primary growth and triggered remote molecular responses. Flame wounding induced significant changes in stem elongation phases, coupled with inhibition of circumnutation. However, the circadian rhythm of phases remained unaltered and the treated plants were always phased with control plants during the days following the stress. For bent plants, the stimulated region of the stem showed an increased PtaJAZ5 expression, suggesting the jasmonates may be involved in local responses to bending. No significant remote responses to bending were observed. 相似文献
995.
Weimin Zhou Min Zhu Ming Gui Lihua Huang Zhi Long Li Wang Hui Chen Yinghao Yin Xianzhen Jiang Yingbo Dai Yuxin Tang Leye He Kuangbiao Zhong 《PloS one》2014,9(10)
Alterations of mitochondrial DNA (mtDNA) have been associated with the risk of a number of human cancers; however, the relationship between mtDNA copy number in peripheral blood leukocytes (PBLs) and the risk of prostate cancer (PCa) has not been investigated. In a case-control study of 196 PCa patients and 196 age-paired healthy controls in a Chinese Han population, the association between mtDNA copy number in PBLs and PCa risk was evaluated. The relative mtDNA copy number was measured using quantitative real-time PCR; samples from three cases and two controls could not be assayed, leaving 193 cases and 194 controls for analysis. PCa patients had significantly higher mtDNA copy numbers than controls (medians 0.91 and 0.82, respectively; P<0.001). Dichotomized at the median value of mtDNA copy number in the controls, high mtDNA copy number was significantly associated with an increased risk of PCa (adjusted odds ratio = 1.85, 95% confidence interval: 1.21–2.83). A significant dose-response relationship was observed between mtDNA copy number and risk of PCa in quartile analysis (Ptrend = 0.011). Clinicopathological analysis showed that high mtDNA copy numbers in PCa patients were significantly associated with high Gleason score and advanced tumor stage, but not serum prostate-specific antigen level (P = 0.002, 0.012 and 0.544, respectively). These findings of the present study indicate that increased mtDNA copy number in PBLs is significantly associated with an increased risk of PCa and may be a reflection of tumor burden. 相似文献
996.
Ying Wang Yunyun Zheng Min Wang Yi Gao Yazhong Xiao Hui Peng 《Standards in genomic sciences》2014,9(3):735-743
Anoxybacillus flavithermus subsp. yunnanensis is the only strictly thermophilic bacterium that is able to tolerate a broad range of toxic solvents at its optimal temperature of 55-60°C. The type strain E13T was isolated from water-sediment slurries collected from a hot spring. This study presents the draft genome sequence of A. flavithermus subsp. yunnanensis E13T and its annotation. The 2,838,393bp long genome (67 contigs) contains 3,035 protein-coding genes and 85 RNA genes, including 10 rRNA genes, and no plasmids. The genome information has been used to compare with the genomes from A. flavithermus subsp. flavithermus strains. 相似文献
997.
Min Yang Yu Zhang Lei Qi Xinyue Mei Jingjing Liao Xupo Ding Weiping Deng Limin Fan Xiahong He Jorge M. Vivanco Chengyun Li Youyong Zhu Shusheng Zhu 《PloS one》2014,9(12)
Background
Intercropping systems could increase crop diversity and avoid vulnerability to biotic stresses. Most studies have shown that intercropping can provide relief to crops against wind-dispersed pathogens. However, there was limited data on how the practice of intercropping help crops against soil-borne Phytophthora disease.Principal Findings
Compared to pepper monoculture, a large scale intercropping study of maize grown between pepper rows reduced disease levels of the soil-borne pepper Phytophthora blight. These reduced disease levels of Phytophthora in the intercropping system were correlated with the ability of maize plants to form a “root wall” that restricted the movement of Phytophthora capsici across rows. Experimentally, it was found that maize roots attracted the zoospores of P. capsici and then inhibited their growth. When maize plants were grown in close proximity to each other, the roots produced and secreted larger quantities of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxy-2-benzoxazolinone (MBOA). Furthermore, MBOA, benzothiazole (BZO), and 2-(methylthio)-benzothiazole (MBZO) were identified in root exudates of maize and showed antimicrobial activity against P. capsici.Conclusions
Maize could form a “root wall” to restrict the spread of P. capsici across rows in maize and pepper intercropping systems. Antimicrobe compounds secreted by maize root were one of the factors that resulted in the inhibition of P. capsici. These results provide new insights into plant-plant-microbe mechanisms involved in intercropping systems. 相似文献998.
999.
Xie M Zhang L He CS Xu F Liu JL Hu ZH Zhao LP Tian Y 《Journal of cellular biochemistry》2012,113(5):1501-1513
Despite an initial response to EGFR tyrosine kinase inhibitors (EGFR-TKI) in EGFR mutant lung cancer, most patients eventually become resistant and result in treatment failure. Recent studies have shown that epithelial to mesenchymal transition (EMT) is associated with drug resistance and cancer cell metastasis. Strong multiple gene signature data indicate that EMT acts as a determinant of insensitivity to EGFR-TKI. However, the exact mechanism for the acquisition of the EMT phenotype in EGFR-TKI resistant lung cancer cells remains unclear. In the present study, we showed that the expression of Notch-1 was highly upregulated in gefitinib-resistant PC9/AB2 lung cancer cells. Notch-1 receptor intracellular domain (N1IC), the activated form of the Notch-1 receptor, promoted the EMT phenotype in PC9 cells. Silencing of Notch-1 using siRNA reversed the EMT phenotype and restored sensitivity to gefitinib in PC9/AB2 cells. Moreover, Notch-1 reduction was also involved in inhibition of anoikis as well as colony-formation activity of PC9/AB2 cells. Taken together, these results provide strong molecular evidence that gefitinib-acquired resistance in lung cancer cells undergoing EMT occurs through activation of Notch-1 signaling. Thus, inhibition of Notch-1 can be a novel strategy for the reversal of the EMT phenotype thereby potentially increasing therapeutic drug sensitivity to lung cancer cells. 相似文献
1000.
王晖 《植物遗传资源学报》2012,13(6):1055-1060
利用6044×01-35构建的重组自交系(RIL)群体为试验材料,对小麦粒重性状进行发育动态QTL分析。结果表明,在小麦花后子粒灌浆的7个不同时期,两个试验点共检测到16个与粒重性状相关的QTL。其中开花后20d检测到的单穗粒重QTL位于2A染色体上,解释率达12%,遗传效应超过10;两环境下控制千粒重QTL在7个时期均被检测到。花后的各个时期均能在Xgwm448-Xgpw7399标记区间定位到千粒重QTL。其中花后10d检测到1个千粒重QTL,位于2A染色体的Xgwm448-Xgpw7399标记区间,解释较大的表型变异,达到18%。Qtl8、Qtl13和Qtl14均定位在Xgwm448-Xgpw7399标记区间的同一位置,共同解释11%的表型变异。花后20d和花后25d均检测到1个QTL,位于2A染色体的Xgwm372-Xgwm95标记区间的不同位点,均能解释4%的表型变异。花后40d检测到1个QTL,位于1D染色体的Xwmc93-Xgpw2224标记区间,解释1%的表型变异。从连锁群的位置上看,控制千粒重的QTL主要集中在2A染色体的Xgwm448-Xgpw7399标记区间,这是一个控制千粒重QTL的富集区域,以期进行精细定位和图位克隆。 相似文献