首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114535篇
  免费   9159篇
  国内免费   4576篇
  128270篇
  2025年   108篇
  2024年   1427篇
  2023年   1671篇
  2022年   3395篇
  2021年   5611篇
  2020年   4067篇
  2019年   4854篇
  2018年   4459篇
  2017年   3285篇
  2016年   4642篇
  2015年   6730篇
  2014年   7908篇
  2013年   8345篇
  2012年   10017篇
  2011年   9006篇
  2010年   5583篇
  2009年   5002篇
  2008年   5725篇
  2007年   5148篇
  2006年   4477篇
  2005年   3510篇
  2004年   2986篇
  2003年   2740篇
  2002年   2285篇
  2001年   1879篇
  2000年   1706篇
  1999年   1682篇
  1998年   1044篇
  1997年   1008篇
  1996年   939篇
  1995年   822篇
  1994年   788篇
  1993年   615篇
  1992年   819篇
  1991年   615篇
  1990年   463篇
  1989年   438篇
  1988年   349篇
  1987年   340篇
  1986年   263篇
  1985年   288篇
  1984年   155篇
  1983年   161篇
  1982年   96篇
  1981年   85篇
  1980年   60篇
  1979年   77篇
  1977年   59篇
  1975年   56篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
    
Aims: Ste15 and ste22 present in the Ebosin biosynthesis gene cluster (ste) were previously shown to function in Ebosin biosynthesis and both of the protein products are predicted to be glycosyltransferases. In this study, their biochemical activities were confirmed. Methods and Results: ste15 and ste22 were cloned and expressed in Escherichia coli. With a continuous coupled spectrophotometric assay and using the purified proteins, we now demonstrated that the protein Ste15 has the ability of catalysing the transfer of glucose specifically from UDP‐glucose to an Ebosin precursor that lacks glucose, the lipid carrier located in the cytoplasmic membrane of the gene ste15 disrupt mutant Streptomyces sp. 139 (ste15?). The protein Ste22 can catalyse the transfer of rhamnose specifically from TDP‐rhamnose to an Ebosin precursor that lacks rhamnose, a lipophilic carrier in the cytoplasmic membrane of the gene ste22 disrupt mutant Streptomyces sp. 139 (ste22?). Conclusions: The gene product of ste15 was identified to be a glucosyltransferase, and the protein encoded by ste22 was found to be a rhamnosyltransferase. Significance and Impact of the Study: Both of two enzymes play essential roles in the formation of repeating units of sugars during Ebosin biosynthesis. These are the first glucosyltransferase and rhamnosyltransferase in the biosynthesis of a Streptomyces exopolysaccharide to be characterized.  相似文献   
202.
We describe here a molecular genetic approach for imaging synaptic inhibition. The thy-1 promoter was used to express high levels of Clomeleon, a ratiometric fluorescent indicator for chloride ions, in discrete populations of neurons in the brains of transgenic mice. Clomeleon was functional after chronic expression and provided non-invasive readouts of intracellular chloride concentration ([Cl(-)](i)) in brain slices, allowing us to quantify age-dependent declines in resting [Cl(-)](i) during neuronal development. Activation of hippocampal interneurons caused [Cl(-)](i) to rise transiently in individual postsynaptic pyramidal neurons. [Cl(-)](i) increased in direct proportion to the amount of inhibitory transmission, with peak changes as large as 4 mM. Integrating responses over populations of pyramidal neurons allowed sensitive detection of synaptic inhibition. Thus, Clomeleon imaging permits non-invasive, spatiotemporally resolved recordings of [Cl(-)](i) in a large variety of neurons, opening up new opportunities for imaging synaptic inhibition and other forms of chloride signaling.  相似文献   
203.
Yuan Y  Li Q  Yu H  Kong L 《PloS one》2012,7(2):e32353

Background

Taxonomy and phylogeny of subclass Heterodonta including Tellinoidea are long-debated issues and a complete agreement has not been reached yet. Mitochondrial (mt) genomes have been proved to be a powerful tool in resolving phylogenetic relationship. However, to date, only ten complete mitochondrial genomes of Heterodonta, which is by far the most diverse major group of Bivalvia, have been determined. In this paper, we newly sequenced the complete mt genomes of six species belonging to Heterodonta in order to resolve some problematical relationships among this subclass.

Principal Findings

The complete mt genomes of six species vary in size from 16,352 bp to 18,182. Hairpin-like secondary structures are found in the largest non-coding regions of six freshly sequenced mt genomes, five of which contain tandem repeats. It is noteworthy that two species belonging to the same genus show different gene arrangements with three translocations. The phylogenetic analysis of Heterodonta indicates that Sinonovacula constricta, distant from the Solecurtidae belonging to Tellinoidea, is as a sister group with Solen grandis of family Solenidae. Besides, all five species of Tellinoidea cluster together, while Sanguinolaria diphos has closer relationship with Solecurtus divaricatus, Moerella iridescens and Semele scaba rather than with Sanguinolaria olivacea.

Conclusions/Significance

By comparative study of gene order rearrangements and phylogenetic relationships of the five species belonging to Tellinoidea, our results support that comparisons of mt gene order rearrangements, to some extent, are a useful tool for phylogenetic studies. Based on phylogenetic analyses of multiple protein-coding genes, we prefer classifying the genus Sinonovacula within the superfamily Solenoidea and not the superfamily Tellinoidea. Besides, both gene order and sequence data agree that Sanguinolaria (Psammobiidae) is not monophyletic. Nevertheless, more studies based on more mt genomes via combination of gene order and phylogenetic analysis are needed to further understand the phylogenetic relationships in subclass Heterodonta.  相似文献   
204.
205.
Journal of Applied Phycology - Dimethyl sulfide (DMS) is an important and dominant trace gas that is transferred from the ocean to the atmosphere; however, the production of DMS from marine algae...  相似文献   
206.
IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner   总被引:2,自引:0,他引:2  
In eukaryotic cells IQGAP1 binds to and alters the function of several proteins, including actin, E-cadherin, beta-catenin, Cdc42, and Rac1. Yeast IQGAP1 homologues have an important role in cytoskeletal organization, suggesting that modulation of the cytoskeleton is a fundamental role of IQGAP1. Phosphorylation is a common mechanism by which cells regulate protein function. Here we demonstrate that endogenous IQGAP1 is highly phosphorylated in MCF-7 human breast epithelial cells. Moreover, incubation of cells with phorbol 12-myristate 13-acetate (PMA) stimulated phosphate incorporation into IQGAP1. By using mass spectrometry, Ser-1443 was identified as the major site phosphorylated on IQGAP1 in intact cells treated with PMA. Ser-1441 was also phosphorylated but to a lesser extent. In vitro analysis with purified proteins documented that IQGAP1 is a substrate for protein kinase Cepsilon, which catalyzes phosphorylation on Ser-1443. Consistent with these findings, inhibition of cellular protein kinase C via bisindolymaleimide abrogated Ser-1443 phosphorylation in response to PMA. To elucidate the biological sequelae of phosphorylation, Ser-1441 and Ser-1443 were converted either to alanine, to create a nonphosphorylatable construct, or to glutamic acid and aspartic acid, respectively, to generate a phosphomimetic IQGAP1. Although overexpression of wild type IQGAP1 promoted neurite outgrowth in N1E-115 neuroblastoma cells, the nonphosphorylatable IQGAP1 S1441A/S1443A had no effect. In contrast, the S1441E/S1443D mutation markedly enhanced the ability of IQGAP1 to induce neurite outgrowth. Our data disclose that IQGAP1 is phosphorylated at multiple sites in intact cells and that phosphorylation of IQGAP1 will alter its ability to regulate the cytoskeleton of neuronal cells.  相似文献   
207.
Angiogenesis is important in tumor development. Vascular endothelial growth factor (VEGF) is involved in this process. In this report, we constructed a recombinant protein (called FK) by fusing the second immunoglobulin-like (Ig-like) domain of a human fms-like tyrosine kinase (Flt-1) with the third Ig-like domain of human kinase insert domain-containing receptor (KDR). FK bound to VEGF165 in a dose-dependent manner with a disocciation constant (Kd) of 2.7 pM. In addition, FK specifically inhibited the proliferation of human microvascular endothelial cell (HMEC) and human umbilical vein endothelial Cell (HUVEC) stimulated by VEGF165. Subsequent studies also demonstrate that FK efficaciously suppresses growth of a variety of tumors, which could make FK a potential drug candidate in anti-tumor therapy.  相似文献   
208.
Lung development depends on accurate and precise patterning of a pulmonary anlagen, consisting of both endodermally and mesodermally derived progenitor cells. In this process, the need to establish communication and control among individual cells is paramount. Transforming growth factor-β (TGFβ) and Wingless/int (Wnt) signaling pathways serve this need. The individual functional repertoire of the two pathways is further expanded by cross-talk and integration of signaling at multiple levels taking advantage of their hard-wired multi-component signal transduction platforms. Cross-talk creates the possibility for both specificity and versatility in signaling during development and during repair of injured tissue. Understanding the mechanics and the physiological implications of this cross-talk is necessary for therapeutic or preventive targeting of either TGFβ or Wnt signaling pathways.  相似文献   
209.
    
The use of PARP inhibitors in combination with radiotherapy is a promising strategy to locally enhance DNA damage in tumors. Loss of XRCC2 compromises DNA damage repairs, and induced DNA damage burdens may increase the reliance on PARP-dependent DNA repairs of cancer cells to render cell susceptibility to PARP inhibitor therapy. Here we tested the hypothesis that XRCC2 loss sensitizes colorectal cancer (CRC) to PARP inhibitor in combination with radiotherapy (RT). We show that high levels of XRCC2 or PARP1 in LARC patients were significantly associated with poor overall survival (OS). Co-expression analyses found that low levels of PARP1 and XRCC2 were associated with better OS. Our in vitro experiments indicated that olaparib+IR led to reduced clonogenic survival, more DNA damage, and longer durations of cell cycle arrest and senescence in XRCC2-deficient cells relative to wild-type cells. Furthermore, our mouse xenograft experiments indicated that RT + olaparib had greater anti-tumor effects and led to long-term remission in mice with XRCC2-deficient tumors. These findings suggest that XRCC2-deficient CRC acquires high sensitivity to PARP inhibition after IR treatment and supports the clinical development for the use of olaparib as a radiosensitizer for treatment of XRCC2-deficient CRC.Subject terms: Colorectal cancer, Prognostic markers  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号