首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105030篇
  免费   1357篇
  国内免费   1924篇
  108311篇
  2024年   35篇
  2023年   271篇
  2022年   499篇
  2021年   813篇
  2020年   523篇
  2019年   657篇
  2018年   12350篇
  2017年   10992篇
  2016年   7999篇
  2015年   1425篇
  2014年   1190篇
  2013年   1331篇
  2012年   5384篇
  2011年   13736篇
  2010年   12523篇
  2009年   8704篇
  2008年   10309篇
  2007年   11821篇
  2006年   693篇
  2005年   872篇
  2004年   1261篇
  2003年   1245篇
  2002年   966篇
  2001年   461篇
  2000年   334篇
  1999年   199篇
  1998年   110篇
  1997年   144篇
  1996年   120篇
  1995年   88篇
  1994年   98篇
  1993年   78篇
  1992年   95篇
  1991年   93篇
  1990年   51篇
  1989年   53篇
  1988年   55篇
  1987年   40篇
  1986年   19篇
  1985年   22篇
  1984年   19篇
  1983年   28篇
  1982年   6篇
  1972年   246篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5′-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.  相似文献   
973.
Objective: Long non-coding RNAs (lncRNAs) recently have been identified as influential indicators in a variety of malignancies. The aim of the present study was to identify a functional lncRNA LINC00488 and its effects on thyroid cancer in the view of cell proliferation and apoptosis.Methods: In order to evaluate the effects of LINC00488 on the cellular process of thyroid cancer, we performed a series of in vitro experiments, including cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2′-deoxyuridine) assay, flow cytometry, transwell chamber assay, Western blot and RT-qPCR. The target gene of LINC00488 was then identified by bioinformatics analysis (DIANA and TargetScan). Finally, a series of rescue experiments was conducted to validate the effect of LINC00488 and its target genes on proliferation, migration, invasion and apoptosis of thyroid cancer.Results: Our findings revealed that LINC00488 was highly expressed in thyroid cancer cell lines (BCPAP, BHP5-16, TPC-1 and CGTH-W3) and promoted the proliferation, migration and invasion, while inhibited the apoptosis of thyroid cancer cells (BCPAP and TPC-1). The results of bioinformatics analysis and dual luciferase reporter gene assay showed that LINC00488 could directly bind to miR-376a-3p and down-regulated the expression level of miR-376a-3p. In addition, Paraoxonase-2 (PON2) was a target gene of miR-376a-3p and negatively regulated by miR-376a-3p. Rescue experiment indicated that LINC00488 might enhance PON2 expression by sponging miR-376a-3p in thyroid cancer.Conclusion: Taken together, our study revealed that lncRNA LINC00488 acted as an oncogenic gene in the progression of thyroid cancer via regulating miR-376a-3p/PON2 axis, which indicated that LINC00488-miR-376a-3p-PON2 axis could serve as novel biomarkers or potential targets for the treatment of thyroid cancer.  相似文献   
974.
增温对高寒草甸生态系统碳氮循环耦合关系的影响 陆地生态系统碳吸收受土壤氮素可用性的调节。然而,全球变化背景下的不同生态系统组分的碳氮比及其所反映的碳氮循环耦合关系尚不十分清楚。本文运用数据同化的方法,将一个高寒草甸增温试验的14组数据同化到草地生态系统模型中,从而评估了增温如何影响陆地生态系统的碳氮循环耦合关系。研究结果表明,增温提高了土壤氮素的有效性,降低了土壤活性碳库的碳氮比,导致植物对土壤氮的吸收增加。但是由于植物叶片吸收的碳比吸收的氮增加更多,使得叶片中碳氮比增加,而根部的碳输入增加则低于氮的增加,导致根部的碳氮比减少。同时,增温降低了凋落物碳氮比,可能是在土壤高氮有效性的条件下,凋落物氮的固定得到增强;而且增温加速了凋落物的分解。同时增温还增加了慢速土壤有机质的碳氮比,使得该土壤碳库的碳固存潜力增大。由于大多数模型在不同的环境中通常使用相对固定的碳氮比,本研究所发现的气候变暖条件下碳氮比的差异变化可为模型参数化提供一个有效的参考,有利于模型对未来气候变化背景下生态系统碳氮耦合关系响应的预测。  相似文献   
975.
976.
Joint capsule fibrosis caused by excessive inflammation results in post-traumatic joint contracture (PTJC). Transforming growth factor (TGF)-β1 plays a key role in PTJC by regulating fibroblast functions, however, cytokine-induced TGF-β1 expression in specific cell types remains poorly characterized. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in inflammation- and fibrosis-associated pathophysiology. In this study, we investigated whether MIF can facilitate TGF-β1 production from fibroblasts and regulate joint capsule fibrosis following PTJC. Our data demonstrated that MIF and TGF-β1 significantly increased in fibroblasts of injured rat posterior joint capsules. Treatment the lesion sites with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP) reduced TGF-β1 production and relieved joint capsule inflammation and fibrosis. In vitro, MIF facilitated TGF-β1 expression in primary joint capsule fibroblasts by activating mitogen-activated protein kinase (MAPK) (P38, ERK) signaling through coupling with membrane surface receptor CD74, which in turn affected fibroblast functions and promoted MIF production. Our results reveal a novel function of trauma-induced MIF in the occurrence and development of joint capsule fibrosis. Further investigation of the underlying mechanism may provide potential therapeutic targets for PTJC.  相似文献   
977.
Ethnopharmacological relevance: Gualou Xiebai Banxia (GLXBBX) decoction is a well-known traditional Chinese herbal formula that was first discussed in the Synopsis of the Golden Chamber by Zhang Zhongjing in the Eastern Han Dynasty. In traditional Chinese medicine, GLXBBX is commonly prescribed to treat cardiovascular diseases, such as coronary heart disease and atherosclerosis.Objective: The present study aimed to examine GLXBBX’s preventative capacity and elucidate the potential molecular mechanism of Poloxamer 407 (P407)-induced hyperlipidemia in rats.Materials and methods: Both the control and model groups received pure water, and the test group also received a GLXBBX decoction. For each administration, 3 ml of the solution was administered orally. To establish hyperlipidemia, a solution mixed with 0.25 g/kg P407 dissolved in 0.9% normal saline was injected slowly into the abdominal cavity. At the end of the study, the rats’ plasma lipid levels were calculated using an automatic biochemical analyzer to evaluate the preventative capability of the GLXBBX decoction, and the serum and liver of the rats were collected.Results: The GLXBBX decoction significantly improved P407-induced hyperlipidemia, including increased plasma triglycerides (TGs), aspartate aminotransferase (AST) elevation, and lipid accumulation. Moreover, GLXBBX decoction treatment increased lipoprotein lipase (LPL) activity and mRNA expression of LPL. Furthermore, GLXBBX significantly suppressed the mRNA expression of stearoyl-CoA desaturase (SCD1).Conclusion: GLXBBX significantly improved P407-induced hyperlipidemia, which may have been related to enhanced LPL activity, increased LPL mRNA expression, and decreased mRNA expression of SCD1.  相似文献   
978.
Uropathogenic Escherichia coli (UPEC) deploy an array of virulence factors to successfully establish urinary tract infections. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Two-component signaling systems (TCSs) are a major mechanism by which bacteria sense environmental cues and respond by initiating adaptive responses. Here, we began this study by characterizing a novel TCS (C3564/C3565, herein renamed orhK/orhR for oxidative resistance and hemolysis kinase/regulator) that is encoded on a UPEC pathogenicity island, using bioinformatic and biochemical approaches. A prevalence analysis indicates that orhK/orhR is highly associated with the UPEC pathotype, and it rarely occurs in other E. coli pathotypes tested. We then demonstrated that OrhK/OrhR directly activates the expression of a putative methionine sulfoxide reductase system (C3566/C3567) and hemolysin (HlyA) in response to host-derived hydrogen peroxide (H2O2) exposure. OrhK/OrhR increases UPEC resistance to H2O2 in vitro and survival in macrophages in cell culture via C3566/C3567. Additionally, OrhK/OrhR mediates hemolysin-induced renal epithelial cell and macrophage death via a pyroptosis pathway. Reducing intracellular H2O2 production by a chemical inhibitor impaired OrhK/OrhR-mediated activation of c3566-c3567 and hlyA. We also uncovered that UPEC links the two key virulence traits by cotranscribing the c3566-c3567 and hlyCABD operons. Taken together, our data suggest a paradigm in which a signal transduction system coordinates both bacterial pathogen defensive and offensive traits in the presence of host-derived signals; and this exquisite mechanism likely contributes to hemolysin-induced severe pathological outcomes.  相似文献   
979.
It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.  相似文献   
980.
石蒜属植物的药用和观赏利用前景   总被引:10,自引:0,他引:10  
石蒜属植物是重要的药用植物,又是一类优良观赏植物,既可用于园林配置,也可用作切花生产或盆栽。综述了石蒜属植物的药用和观赏价值并对其应用前景进行了探讨,为全面开发利用我国这一丰富的野生资源提供了一些理论基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号