首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   61篇
  国内免费   81篇
  852篇
  2023年   17篇
  2022年   27篇
  2021年   42篇
  2020年   26篇
  2019年   18篇
  2018年   29篇
  2017年   30篇
  2016年   30篇
  2015年   30篇
  2014年   56篇
  2013年   49篇
  2012年   69篇
  2011年   64篇
  2010年   44篇
  2009年   29篇
  2008年   31篇
  2007年   32篇
  2006年   26篇
  2005年   28篇
  2004年   18篇
  2003年   15篇
  2002年   27篇
  2001年   8篇
  2000年   23篇
  1999年   15篇
  1998年   7篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1950年   1篇
排序方式: 共有852条查询结果,搜索用时 15 毫秒
771.
DNA is one of the most essential molecules in organisms, containing all the information necessary for organisms to live. It replicates and provides a mechanism for heredity and evolution. Various events cause the degradation of DNA into nucleotides. DNA also has a darker side that has only recently been recognized; DNA that is not properly degraded causes various diseases. In this review, we discuss four deoxyribonucleases that function in the nucleus, cytosol, and lysosomes, and how undigested DNA causes such diseases as cancer, cataract, and autoinflammation. Studies on the biochemical and physiological functions of deoxyribonucleases should continue to increase our understanding of cellular functions and human diseases.Chromosomal DNA replicates semiconservatively; it is constructed in growing cells and is not thereafter metabolized within the cell. Both animal and plant cells carry several DNA-degrading enzymes (called deoxyribonuclease, or DNase). DNases have primarily been regarded as enzymes that digest the DNA in food into nucleotides for use in rebuilding the organism''s own DNA, just as proteases digest food proteins (from fish, meat, or vegetables) into amino acids. For many years, studies on DNases focused almost exclusively on their enzymatic activity, and not on their physiological or pathological roles. This changed with the discovery that chromosomal DNA is digested in apoptotic cells (Wyllie 1980). Since then, DNA degradation has been observed in the differentiation processes of red blood cells, skin, and optic lens (Bassnett 2002; McGrath et al. 2008; Eckhart et al. 2013). Reverse-transcribed DNA from endogenous retro elements is digested in the cytoplasm (Stetson et al. 2008), and in inflammation, extracellular DNA released from dead cells is actively degraded in the circulation (Rekvig and Mortensen 2012). Here, we discuss how DNA is digested in physiological and pathological settings, and what happens to the organism if DNA is not properly digested.  相似文献   
772.
773.
The purpose of this study was to determine the efficacy of a nucleic acid sequence-based amplification (NASBA) method of detecting noroviruses in artificially and naturally contaminated shellfish. We used 58 fecal samples that tested positive for noroviruses with electron microscopy (EM) to develop an NASBA assay for these viruses. Oligonucleotide primers targeting the polymerase coding region were used to amplify the viral RNA in an isothermal process that resulted in the accumulation of RNA amplicons. These amplicons were detected by hybridization with digoxigenin-labeled oligonucleotide probes that were highly specific for genogroup I (GI) and genogroup II (GII) of noroviruses. The expected band of 327 bp appeared in denaturing agarose gel without any nonspecific band. The specific signal for each amplicon was obtained through Northern blotting in many repeats. All fecal samples of which 46 (79.3%) belonged to GII and 12 (20.6%) belonged to GI were positive for noroviruses by EM and by NASBA. Target RNA concentrations as low as 5 pg/ml were detected in fecal specimens using NASBA. When the assay was applied to artificially contaminated shellfish, the sensitivity to nucleic acid was 100 pg/1.5 g shellfish tissue. The potential use of this assay was also confirmed in naturally contaminated shellfish collected from different ponds in Guangzhou city of China, of which 24 (18.76%) out of 128 samples were positive for noroviruses; of these, 19 (79.6%) belonged to GII and 5 (20.4%) belonged to GI. The NASBA assay provided a more rapid and efficient way of detecting noroviruses in fecal samples and demonstrated its potential for detecting noroviruses in food and environmental samples with high specificity and sensitivity.  相似文献   
774.
The bacterial strain Paenibacillus xylanilyticus KJ-03 was isolated from a sample of soil used for cultivating Amorphophallus konjac. The cellulase gene, cel5A was cloned using fosmid library and expressed in Escherichia coli BL21 (trxB). The cel5A gene consists of a 1,743 bp open reading frame and encodes 581 amino acids of a protein. Cel5A contains N-terminal signal peptide, a catalytic domain of glycosyl hydrolase family 5, and DUF291 domain with unknown function. The recombinant cellulase was purified by Ni-affinity chromatography. The cellulase activity of Cel5A was detected in clear band with a molecular weight of 64 kDa by zymogram active staining. The maximum activity of the purified enzyme was displayed at a temperature of 40 °C and pH 6.0 when carboxymethyl cellulose was used as a substrate. It has 44% of its maximum activity at 70 °C and retained 66% of its original activity at 45 °C for 1 h. The purified cellulase hydrolyzed avicel, CMC, filter paper, xylan, and 4-methylumbelliferyl β-d-cellobiose, but no activity was detected against p-nitrophenyl β-d-glucoside. The end products of the hydrolysis of cellotetraose and cellopentaose by Cel5A were detected by thin layer chromatography, while enzyme did not hydrolyze cellobiose and cellotriose.  相似文献   
775.
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by amyloid-β (Aβ) deposition in senile plaques colocalized with activated microglia and astrocytes. Recent studies suggest that CXCL8 is involved in the AD pathogenesis. The objective of this study was to determine the cellular sources of CXCL8 in the central nervous system during AD pathogenesis, and investigate the effects of CXCL8 on neuronal survival and/or functions. Our results showed significantly higher CXCL8 levels in AD brain tissue lysates as compared to those of age-matched controls. Upon Aβ and/or pro-inflammatory cytokine stimulation, microglia, astrocytes and neurons were all capable of CXCL8 production in vitro. Although CXCL8-alone did not alter neuronal survival, it did inhibit Aβ-induced neuronal apoptosis and increased neuronal brain-derived neurotrophic factor (BDNF) production. We conclude that microglia, astrocytes and neurons, all contribute to the enhanced CXCL8 levels in the CNS upon Aβ and/or pro-inflammatory cytokine stimulation. Further, CXCL8 protects neurons possibly by paracrine or autocrine loop and regulates neuronal functions, therefore, may play a protective role in the AD pathogenesis.  相似文献   
776.
Tseng HH  Chuah QY  Yang PM  Chen CT  Chao JC  Lin MD  Chiu SJ 《PloS one》2012,7(4):e36006
BPR0L075 [6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole] is a novel anti-microtubule drug with anti-tumor and anti-angiogenic activities in vitro and in vivo. Securin is required for genome stability, and is expressed abundantly in most cancer cells, promoting cell proliferation and tumorigenesis. In this study, we found that BPR0L075 efficiently induced cell death of HCT116 human colorectal cancer cells that have higher expression levels of securin. The cytotoxicity of BPR0L075 was attenuated in isogenic securin-null HCT116 cells. BPR0L075 induced DNA damage response, G(2)/M arrest, and activation of the spindle assembly checkpoint in HCT116 cells. Interestingly, BPR0L075 induced phosphorylation of securin. BPR0L075 withdrawal resulted in degradation of securin, mitotic exit, and mitotic catastrophe, which were attenuated in securin-null cells. Inhibition of cdc2 decreased securin phosphorylation, G(2)/M arrest and cell death induced by BPR0L075. Moreover, BPR0L075 caused cell death through a caspase-independent mechanism and activation of JNK and p38 MAPK pathways. These findings provided evidence for the first time that BPR0L075 treatment is beneficial for the treatment of human colorectal tumors with higher levels of securin. Thus, we suggest that the expression levels of securin may be a predictive factor for application in anti-cancer therapy with BPR0L075 in human cancer cells.  相似文献   
777.
缰核介导刺激岛叶、杏仁中央核引起的升压反应   总被引:2,自引:0,他引:2  
目的:证明缰核(Hb)是刺激岛叶(INS)、杏仁中央核(CeA)所引起的升压效应下行通路的主要中继站之一。方法:分别电刺激INS、CeA均可引起升压反应,在刺激电极的同侧及双侧Hb内微量注射盐酸利多卡因,再电刺激INS、CeA观察升压效应。结果:单侧Hb内注射利多卡因,电刺激INS、CeA所引起的升压反应分别降低36.9%、39.6%。双侧Hb内注射利多卡因,电刺激INS、CeA所引起的升压反应分别降低41.7%、46.1%。单侧或双侧Hb内微量注射生理盐水或人工脑脊液均不能降低电刺激INS、CeA引起的升压反应。结论:缰核是介导电刺激岛叶、杏仁中央核引起升压效应下行通路的主要中继站之一。  相似文献   
778.
Aurora-A kinase, a serine/threonine mitotic kinase involved in mitosis, is overexpressed in several human cancers. A recent study showed that Aurora-A mediates glucose metabolism via SOX8/FOXK1 in ovarian cancer. However, the roles of Aurora-A in metabolic diseases remain unclear. This study found that Aurka loss in the intestinal epithelium promoted age-induced obesity and enlargement of lipid droplets in parallel with an increase in infiltrated macrophages in the white adipocyte tissue (WAT) of male mice. Moreover, loss of Aurka induced the expression of lipid metabolism regulatory genes, including acetyl-coenzyme A carboxylase 1 (Acc1), in association with an increase in the levels of p-AKT in the intestinal epithelium as well as WAT. Blockade of AKT activation reduced the expression of lipid metabolism regulatory genes. In subsequent experiments, we found that the Firmicutes abundance and the levels of short-chain fatty acids (SCFAs) in the gut were dramatically increased in Aurkaf/+;VillinCre/+ mice compared with Aurkaf/+ mice. Additionally, propionate increased the phosphorylation of AKT in vitro. These observations indicated that Aurka loss in the intestinal epithelium contributed to gut microbiota dysbiosis and higher levels of SCFAs, especially propionate, leading to AKT activation and lipid metabolism regulatory gene expression, which in turn promoted age-induced obesity.  相似文献   
779.
780.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号