首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21103篇
  免费   1688篇
  国内免费   1742篇
  24533篇
  2024年   56篇
  2023年   316篇
  2022年   713篇
  2021年   1152篇
  2020年   767篇
  2019年   980篇
  2018年   913篇
  2017年   616篇
  2016年   913篇
  2015年   1344篇
  2014年   1520篇
  2013年   1584篇
  2012年   1949篇
  2011年   1710篇
  2010年   1001篇
  2009年   929篇
  2008年   1103篇
  2007年   909篇
  2006年   837篇
  2005年   652篇
  2004年   513篇
  2003年   456篇
  2002年   374篇
  2001年   323篇
  2000年   322篇
  1999年   326篇
  1998年   208篇
  1997年   242篇
  1996年   191篇
  1995年   189篇
  1994年   162篇
  1993年   130篇
  1992年   181篇
  1991年   143篇
  1990年   146篇
  1989年   98篇
  1988年   90篇
  1987年   87篇
  1986年   63篇
  1985年   65篇
  1984年   43篇
  1983年   47篇
  1982年   21篇
  1981年   16篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1969年   9篇
  1968年   8篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
我们采用RT-PCR方法克隆了2个APl同源基因全长cDNA,分别命名为MAPl-1(GenBank accession No.FJ529206)和MAPl-2(GenBank accession No.FJ529207).MAPl-1编码247个氨基酸,开放阅读框长度为741 bp,蛋白质分子量为28.54kD,等电点为8.31;MAPl-2编码248个氨基酸,开放阅读框长度为744 bp,蛋白质分子量为28.78 kD,等电点为8.70.同源性分析表明,它们的核苷酸序列与其它木本植物APl同源基因的一致性为72%~81%.实验分析表明,MAPl-1和MAPl-2第1至第61个氨基酸含有一个MADS盒结构域,第88至第178个为K盒结构域;两个基因均定位于细胞核,且功能位点分布存在着不同,推测这两个基因在花器官发育过程中的功能存在差异.蛋白二级结构预测显示,MAPl-1蛋白有12个a-螺旋,4个β折叠区,14个β-转角;而MAPl-2蛋白有11个a-螺旋,5个β折叠区,15个β-转角:其大多数氨基酸具有亲水性.本研究有助于进一步了解芒果的开花分子机理及成花的生物学发育阶段.  相似文献   
92.
动态监测2011年、2013年和2016年我国不同地区医院内获得性血流感染病原菌分布及耐药进展趋势。从全国10个城市回顾性收集血流感染病原菌非重复性株,采用琼脂稀释法或微量肉汤稀释法进行药物敏感性试验,采用Whonet 5.6软件对药敏试验结果进行分析。收集的2 248株血流感染病原菌中革兰阴性杆菌为1 657株 (占73.7%),革兰阳性球菌为591株 (占26.3%)。分离率排名前五的病原菌依次为大肠埃希菌 (32.6%,733株/2 248株)、肺炎克雷伯菌 (14.5%,327株/2 248株)、金黄色葡萄球菌 (10.0%,225株/2 248株)、鲍曼不动杆菌 (8.7%,196株/ 2 248株) 和铜绿假单胞菌 (6.2%,140株/2 248株)。血流感染分离的革兰阴性杆菌对抗菌药物体外敏感率较高的抗菌药物依次为粘菌素 (96.5%,1 525株/1 581株,不包括天然耐药菌株)、替加环素 (95.6%,1 375株/1 438株,不包括天然耐药菌株)、头孢他啶/克拉维酸 (89.2%,1 112株/1 246株)、阿米卡星 (86.4%,1 382株/1 599株) 和美罗培南 (85.7%,1 376株/1 605株);革兰阳性球菌对抗菌药物体外敏感率较高的抗菌药物依次为替加环素、替考拉宁和达托霉素 (敏感率均为100.0%)、万古霉素和利奈唑胺 (敏感率均为99.7%)。2011年、2013年和2016年产超广谱β-内酰胺酶肠杆菌科细菌分离率分别为50.6% (206株/407株)、49.8% (136株/273株) 和38.9% (167株/429株);碳青霉烯不敏感肠杆菌科细菌分离率分别为2.2% (9株/408株)、4.0% (16株/402株) 和3.9% (17株/ 439株);多重耐药鲍曼不动杆菌分离率分别为76.4% (55株/72株)、82.7% (43株/52株) 和87.5% (63株/72株),多重耐药铜绿假单胞菌分离率分别为9.8% (5株/51株)、20.0% (7株/35株) 和13.0% (7株/54株);甲氧西林耐药金黄色葡萄球菌的分离率分别为51.9% (41株/79株)、29.7% (19株/64株) 和31.7% (26株/82株)。屎肠球菌和粪肠球菌中高水平庆大霉素耐药株分离率分别为43.2% (48株/111株) 和40.9% (27株/66株)。碳青霉烯不敏感肠杆菌科细菌中肺炎克雷伯菌居首位,占57.1% (24株/42株) 。肠杆菌科细菌中分离出30株替加环素不敏感株,其中肺炎克雷伯菌占76.7% (23株/30株);分离出粘菌素耐药肠杆菌科细菌39株,其中大肠埃希菌、阴沟肠杆菌和肺炎克雷伯菌分别占43.6% (17株/39株)、35.9% (14株/39株) 和15.4% (6株/39株)。医院获得性血流感染病原菌主要为革兰阴性杆菌 (以大肠埃希菌和肺炎克雷伯菌为主),其对替加环素、粘菌素和碳青霉烯类药物的敏感率较高;革兰阳性球菌中分离率最高的为金黄色葡萄球菌,其次为屎肠球菌,这两种细菌对替加环素、达托霉素、利奈唑胺、万古霉素和替考拉宁的敏感率较高。粘菌素耐药肠杆菌科细菌、替加环素不敏感肠杆菌科细菌、利奈唑胺或万古霉素不敏感革兰阳性球菌的分离,警示临床高度关注,仍需动态监测耐药进展趋势。  相似文献   
93.
Controllable storage and release of solar energy has always been a highlighted scientific issue for its benefit of mankind. Solar thermal fuels (STFs) supply a closed cycle and renewable energy‐storage strategy by transforming solar energy into chemical energy stored in the conformation of molecular isomers, such as cis/trans‐azobenzene, and releasing it as heat under various stimuli. Although the potential high energy density of the STFs which are based on the hybrids of azobenzene derivatives and carbon nanomaterials has been reported the solvent‐assistant charging hinders their practicability. In this study, a solid‐state STF device is designed and fabricated by compositing one photoliquefiable azobenzene (PLAZ) derivative with a flexible fabric template. The photoinduced phase transition of the PLAZ derivative enables the charging of the flexible STFs to be totally solvent‐free. Interestingly, the energy‐storage capacity (energy density ≈201 J g?1) of flexible PLAZ STFs has been improved by the soft fabric template. The exothermic situation is monitored with one infrared camera, which shows 4 °C temperature difference between charged and discharged samples under blue light stimulus. The flexible STFs are may be used in practice as heating equipment.  相似文献   
94.
95.
Z Wang  Y Zhou  X Hu  W Chen  X Lin  L Sun  X Xu  W Hong  T Wang 《Cell death & disease》2015,6(10):e1923
RILP (Rab7-interacting lysosomal protein) is a key regulator for late endosomal/lysosomal trafficking, and probably a tumor suppressor in prostate cancer. However, the role of RILP in other cancers and the underlying mechanism for RILP in regulating the invasion of cancer cells remain to be investigated. In this study, we showed that overexpression of RILP in breast cancer cells inhibits the migration and invasion, whereas the depletion of RILP by RNAi-mediated knockdown promotes the migration and invasion. We identified RalGDS (Ral guanine nucleotide dissociation stimulator) as a novel interacting partner for RILP, and truncation analysis revealed the N-terminal region of RILP is responsible for interacting with the guanine nucleotide exchange factor (GEF) domain of RalGDS. Immunofluorescence microscopy revealed that RalGDS can be recruited to the late endosomal compartments by RILP. Further investigations indicated that the overexpression of RILP inhibits the activity of RalA, a downstream target of RalGDS. Our data suggest that RILP suppresses the invasion of breast cancer cells by interacting with RalGDS to inhibit its GEF activity for RalA.Diverse alternations of oncogenic factors can either activate or inactivate signaling pathways involved in cell proliferation, migration and apoptosis that are intimately associated with cancer development.1, 2, 3 Recent studies suggest that the derailed membrane trafficking is also closely related to cancer development. Activation or attenuation of signal transduction is usually linked to membrane trafficking. The recycling and degradation of surface receptors, such as EGFR, will influence downstream signaling pathways.4, 5 Therefore, the cross-talk between membrane trafficking and signaling pathway could be the novel mechanism associated with cancer development.Alternations of the membrane trafficking machineries are established as the causes for some cancers. For examples, Rab25 is overexpressed in breast and ovary caners,6 and recent investigations suggest that Rab25 is also related to other cancers.7, 8, 9 Arf6 is a vital regulator for the invasive activity of breast cancer cells.10 Disordered membrane trafficking is emerging as an important property during tumorigenesis, thus the membrane trafficking machineries are potential therapeutic targets for cancer treatment.Rab small GTPases are considered as the master regulators for membrane trafficking.11 The interactions between Rab proteins and their downstream effectors are involved in various steps of vesicle trafficking such as tethering and fusion. Aberrant activities of Rab proteins are closely related to some cancers.12, 13, 14, 15 Some Rab proteins mediate the trafficking of cargos, especially membrane proteins on the plasma membrane, such as integrin and E-cadherin. Their aberrant trafficking is proposed to be the underlying mechanism for the functional regulation of Rab protein in cancer cells.16, 17Rab7, together with its downstream effector RILP (Rab7-interacting lysosomal protein), are the key regulators for late endosomal/lysosomal trafficking. RILP interacts with activated GTP-bound Rab7 through its carboxylic terminal region, whereas interacting with dynein/dynactin complex is mediated through its amino region, driving late endosomal/lysosomal trafficking, especially lysosomal positioning.18, 19 Rab7 has been demonstrated to be an important factor for cell growth and survival.20, 21 Recently, Steffan et al.22 found that RILP suppresses the invasion of prostate cancer cells through inhibiting the anterograde trafficking of lysosomes.23 Whether the potential role of Rab7-RILP in cell migration/invasion is also implicated in other cancers is of interest to investigate and the underlying molecular mechanism is yet to be defined.In this study, we found that RILP suppresses the proliferation, migration and invasion of breast cancer cells. We also identified (Ral guanine nucleotide dissociation stimulator (RalGDS) as a novel interacting partner for RILP. The interaction of RILP with RalGDS modulates the activity of RalA. Our results suggest that RILP suppresses the invasion of breast cancer cells by modulating the activity of RalA through interaction with RalGDS.  相似文献   
96.
Li X  Luo X  Li Z  Wang G  Xiao H  Tao D  Gong J  Hu J 《Molecular biology reports》2012,39(8):8225-8230
Salvador promotes both cell cycle exit and apoptosis through the modulation of both cyclin E and Drosophila inhibitor of apoptosis protein in Drosophila. However, the cellular function of human Salvador (hSav1) is rarely reported. To screen for novel binding proteins that interact with hSav1, the cDNA of hSav1 was cloned into a bait protein plasmid, and positive clones were screened from a human fetal liver cDNA library by the yeast two-hybrid system. hSav1 mRNA was expressed in yeast and there was no self-activation and toxicity in the yeast strain AH109. Twenty proteins were found to interact with hSav1, including HS1 (haematopoietic cell specific protein1)-associated protein X-1 (HAX-1); neural precursor cell expressed, developmentally down-regulated 9, pyruvate kinase, liver and RBC, cytochrome c oxidase subunit Vb, enoyl coenzyme A hydratase short chain 1, and NADH dehydrogenase (ubiquinone) 1 beta subcomplex, demonstrating that the yeast two-hybrid system is an efficient method for investigating protein interactions. Among the identified proteins, there were many mitochondrial proteins, indicating that hSav1 may play a role in mitochondrial function. We also confirmed the interaction of HAX-1 and hSav1 in mammalian cells. This investigation provides functional clues for further exploration of potential apoptosis-related proteins in disease biotherapy.  相似文献   
97.
98.
Lung cancer is the leading cause of cancer-related mortality all over the world. In recent years, pulmonary adenocarcinoma has surpassed squamous cell carcinoma in frequency and is the predominant form of lung cancer in many countries. Epidemiological investigations have shown an inverse relationship between garlic (Allium sativum) consumption and death rate from many cancers. Diallyl trisulfide (DATS) is one of the garlic-derived compounds (also known as: organosulfer compounds, OSC). DATS can induce apoptosis and inhibit the growth of many cancer cell lines. Our study demonstrated that the apoptotic incidents induced by DATS were a mitochondria-dependent caspase cascade through a significant decrease of the anti-apoptotic Bcl-2 that resulted in up-regulation of the ratio of Bax/Bcl-2 and the activity of caspase-3, -8, and -9. Eventually, DATS induced the apoptosis and inhibited the proliferation in a concentration- and time-dependent manner. Furthermore, by establishing an animal model of female BALB/c nude mice with A549 xenografts, we found that oral gavage of DATS significantly retarded growth of A549 xenografts in nude mice without causing weight loss or any other side effects compared with the control group. All the evidence both in vitro and in vivo suggested that DATS could be an ideal anti-cancer drug.  相似文献   
99.
A strain of the cyanobacterium Arthrospira was isolated from Lake Chahannaoer in northern China and was characterized according to microscopic morphology, photosynthetic oxygen-evolving activity, growth rate, and nutritional profile. Compared with thermophilic Arthrospira species occurring naturally in tropical and subtropical lakes, this isolate is mesophilic and grows optimally at ~20 degreesC. The total protein, fatty acid, phycocyanin, carotenoid, and chlorophyll a contents were 67.6, 6.1, 4.32, 0.29, and 0.76 grams per 100 grams of dry weight, respectively. The strain is rich in polyunsaturated fatty acids (PUFAs). An essential omega-3 fatty acid, docosahexaenoic acid (DHA), was detected, and gamma-linolenic acid (GLA) and DHA accounted for 28.3% of the total fatty acid content. These features of this newly isolated strain make it potentially useful in commercial mass culture in local areas or as a biofuel feedstock. It is also an alternative resource for studying the metabolic PUFA pathways and mechanisms of cold stress tolerance in cyanobacteria.  相似文献   
100.
Regeneration of pulmonary epithelial cells plays an important role in the recovery of acute lung injury (ALI), which is defined by pulmonary epithelial cell death. However, the mechanism of the regenerative capacity of alveolar epithelial cells is unknown. Using a lung injury mouse model induced by hemorrhagic shock and lipopolysaccharide, a protein mass spectrometry‐based high‐throughput screening and linage tracing technology to mark alveolar epithelial type 2 cells (AEC2s), we analyzed the mechanism of alveolar epithelial cells proliferation. We demonstrated that the expression of Hippo‐yes‐associated protein 1 (YAP1) key proteins were highly consistent with the regularity of the proliferation of alveolar epithelial type 2 cells after ALI. Furthermore, the results showed that YAP1+ cells in lung tissue after ALI were mainly Sftpc lineage‐labeled AEC2s. An in vitro proliferation assay of AEC2s demonstrated that AEC2 proliferation was significantly inhibited by both YAP1 small interfering RNA and Hippo inhibitor. These findings revealed that YAP functioned as a key regulator to promote AEC2s proliferation, with the Hippo signaling pathway playing a pivotal role in this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号