首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4533篇
  免费   474篇
  国内免费   439篇
  2024年   5篇
  2023年   48篇
  2022年   122篇
  2021年   193篇
  2020年   155篇
  2019年   228篇
  2018年   184篇
  2017年   171篇
  2016年   190篇
  2015年   278篇
  2014年   295篇
  2013年   333篇
  2012年   365篇
  2011年   327篇
  2010年   231篇
  2009年   202篇
  2008年   227篇
  2007年   208篇
  2006年   172篇
  2005年   155篇
  2004年   172篇
  2003年   196篇
  2002年   227篇
  2001年   137篇
  2000年   116篇
  1999年   93篇
  1998年   83篇
  1997年   57篇
  1996年   36篇
  1995年   32篇
  1994年   22篇
  1993年   16篇
  1992年   14篇
  1991年   26篇
  1990年   21篇
  1989年   23篇
  1988年   9篇
  1987年   11篇
  1986年   12篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   5篇
  1974年   2篇
  1973年   4篇
  1966年   2篇
  1948年   1篇
  1947年   1篇
排序方式: 共有5446条查询结果,搜索用时 31 毫秒
181.
182.
Gestational diabetes mellitus (GDM) is known as different degree glucose intolerance that is initially identified during pregnancy. MicroRNAs (miRs) may be a potential candidate for treatment of GDM. Herein, we suggested that miR‐351 could be an inhibitor in the progression of GDM via the phosphoinositide 3‐kinase/protein kinase B (PI3K/AKT) pathway. Microarray analysis was used to identify differentially expressed genes and predict miRs regulating flotillin 2 (FLOT2). Target relationship between miR‐351 and FLOT2 was verified. Gestational diabetes mellitus mice were treated with a series of mimic, inhibitor and small interfering RNA to explore the effect of miR‐351 on insulin resistance (IR), cell apoptosis in pancreatic tissues and liver gluconeogenesis through evaluating GDM‐related biochemical indexes, as well as expression of miR‐351, FLOT2, PI3K/AKT pathway‐, IR‐ and liver gluconeogenesis‐related genes. MiR‐351 and FLOT2 were reported to be involved in GDM. FLOT2 was the target gene of miR‐351. Gestational diabetes mellitus mice exhibited IR and liver gluconeogenesis, up‐regulated FLOT2, activated PI3K/AKT pathway and down‐regulated miR‐351 in liver tissues. Additionally, miR‐351 overexpression and FLOT2 silencing decreased the levels of FLOT2, phosphoenolpyruvate carboxykinase, glucose‐6‐phosphatase, fasting blood glucose, fasting insulin, total cholesterol, triglyceride, glyeosylated haemoglobin and homeostasis model of assessment for IR index (HOMA‐IR), extent of PI3K and AKT phosphorylation, yet increased the levels of HOMA for islet β‐cell function, HOMA for insulin sensitivity index and glucose transporter 2 expression, indicating reduced cell apoptosis in pancreatic tissues and alleviated IR and liver gluconeogenesis. Our results reveal that up‐regulation of miR‐351 protects against IR and liver gluconeogenesis by repressing the PI3K/AKT pathway through regulating FLOT2 in GDM mice, which identifies miR‐351 as a potential therapeutic target for the clinical management of GDM.  相似文献   
183.
Long noncoding RNAs (lncRNAs) are involved in the pathology of various tumours, including non‐small cell lung cancer (NSCLC). However, the underlying molecular mechanisms of their specific association with NSCLC have not been fully elucidated. Here, we report that a cytoplasmic lncRNA, DUXAP9‐206 is overexpressed in NSCLC cells and closely related to NSCLC clinical features and poor patient survival. We reveal that DUXAP9‐206 induced NSCLC cell proliferation and metastasis by directly interacting with Cbl‐b, an E3 ubiquitin ligase, and reducing the degradation of epidermal growth factor receptor (EGFR) and thereby augmenting EGFR signaling in NSCLC. Notably, correlations between DUXAP9‐206 and activated EGFR signaling were also validated in NSCLC patient specimens. Collectively, our findings reveal the novel molecular mechanisms of DUXAP9‐206 in mediating the progression of NSCLC and DUXAP9‐206 may serve as a potential target for NSCLC therapy.  相似文献   
184.
Seven new polyhydroxypregnane glycosides, named cynotophyllosides P–V, together with three known analogs were isolated from the roots of Cynanchum otophyllum C.K.Schneid . Their structures were elucidated by a variety of spectroscopic techniques, as well as acid‐catalyzed hydrolysis. All isolates were tested for their immunological activities in vitro against Con A‐ and LPS‐induced proliferation of mice splenocytes. Immunoenhancing (for 1 , 9 ) and immunosuppressive (for 2 ) activities were observed. Furthermore, cynotophylloside R ( 3 ) showed immunomodulatory as it enhanced the proliferation of splenocytes in low concentration and suppressed immune cells in concentration more than 1.0 μg/ml.  相似文献   
185.
Yang  Shu  Zhao  Kang  Xu  Zhengtian 《Plasmonics (Norwell, Mass.)》2019,14(6):1377-1384

Two kinds of graphene-coated fiber systems are proposed and studied for optical trapping. Their plasmonic modes in uniform environment and close to the substrate are studied in the finite element method. The optical forces exerted on dielectric nanoparticle by these systems are calculated by standalone waveguide approximation. It is found that for the dielectric particle with diameter of 1 nm, the maximal optical forces generated by certain modes are more than 107 fN/W whereas their force ranges are only one to several nanometers. These results may have important applications in strong and high-precision optical tweezers.

  相似文献   
186.

The ability of a blood clot to modulate blood flow is determined by the clot’s resistance, which depends on its structural features. For a flow with arterial shear, we investigated the characteristic patterns relating to clot shape, size, and composition on the one hand, and its viscous resistance, intraclot axial flow velocity, and shear distributions on the other. We used microfluidic technology to measure the kinetics of platelet, thrombin, and fibrin accumulation at a thrombogenic surface coated with collagen and tissue factor (TF), the key clot-formation trigger. We subsequently utilized the obtained data to perform additional calibration and validation of a detailed computational fluid dynamics model of spatial clot growth under flow. We then ran model simulations to gain insights into the resistance of clots formed under our experimental conditions. We found that increased thrombogenic surface length and TF surface density enhanced the bulk thrombin and fibrin generation in a nonadditive, synergistic way. The height of the platelet deposition domain—and, therefore, clot occlusivity—was rather robust to thrombogenic surface length and TF density variations, but consistently increased with time. Clot viscous resistance was non-uniform and tended to be higher in the fibrin-rich, inner “core” region of the clot. Interestingly, despite intraclot structure and viscous resistance variations, intraclot flow velocity variations were minor compared to the abrupt decrease in flow velocity around the platelet deposition region. Our results shed new light on the connection between the structure of clots under arterial shear and spatiotemporal variations in their resistance to flow.

  相似文献   
187.
188.
Calorie restriction (CR), which lengthens lifespan in many species, is associated with moderate hyperadrenocorticism and attenuated inflammation. Given the anti‐inflammatory action of glucocorticoids, we tested the hypothesis that the hyperadrenocorticism of CR contributes to its attenuated inflammatory response. We used a corticotropin‐releasing‐hormone knockout (CRHKO) mouse, which is glucocorticoid insufficient. There were four controls groups: CRHKO mice and wild‐type (WT) littermates fed either ad libitum (AL) or CR (60% of AL food intake), and three experimental groups: (a) AL‐fed CRHKO mice given corticosterone (CORT) in their drinking water titrated to match the integrated 24‐hr plasma CORT levels of AL‐fed WT mice, (b) CR‐fed CRHKO mice given CORT to match the 24‐hr CORT levels of AL‐fed WT mice, and (c) CR‐fed CHRKO mice given CORT to match the 24‐hr CORT levels of CR‐fed WT mice. Inflammation was measured volumetrically as footpad edema induced by carrageenan injection. As previously observed, CR attenuated footpad edema in WT mice. This attenuation was significantly blocked in CORT‐deficient CR‐fed CRHKO mice. Replacement of CORT in CR‐fed CRHKO mice to the elevated levels observed in CR‐fed WT mice, but not to the levels observed in AL‐fed WT mice, restored the anti‐inflammatory effect of CR. These results indicate that the hyperadrenocorticism of CR contributes to the anti‐inflammatory action of CR, which may in turn contribute to its life‐extending actions.  相似文献   
189.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   
190.
The reduction of nuclear fast red (NFR) stain by sodium tetrahydroboron was catalyzed in the presence of silver ions (Ag+). The fluorescence properties of reduced NFR differed from that of NFR. The product showed fluorescence emission at 480 nm with excitation at 369 nm. Furthermore, the fluorescence intensity of the mixture increased strongly in the presence of Ag+ and Britton–Robinson buffer at pH 4.78. There was a good linear relationship between increased fluorescence intensity (ΔI) and Ag+ concentration in the range 5.0 × 10?9 to 5.0 × 10?8 M. The correlation coefficient was 0.998, and the detection limit (3σ/k) was 1.5 × 10?9 M. The colour of the reaction system changed with variation in Ag+ concentration over a wide range. Based on the colour change, a visual semiquantitative detection method for recognition and sensing of Ag+ was developed for the range 1.0 × 10?8 to 5.0 × 10?4 M, with an indicator that was visible to the naked eye. Therefore, a sensitive, simple method for determination of Ag+ was developed. Optimum conditions for Ag+ detection, the effect of other ions and the analytical application of Ag+ detection of synthesized sample were investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号