首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56831篇
  免费   17567篇
  国内免费   2010篇
  2024年   39篇
  2023年   360篇
  2022年   856篇
  2021年   1827篇
  2020年   3005篇
  2019年   4699篇
  2018年   4752篇
  2017年   4899篇
  2016年   5248篇
  2015年   5870篇
  2014年   5756篇
  2013年   6387篇
  2012年   4680篇
  2011年   4070篇
  2010年   4596篇
  2009年   3261篇
  2008年   2410篇
  2007年   1878篇
  2006年   1712篇
  2005年   1567篇
  2004年   1426篇
  2003年   1305篇
  2002年   1229篇
  2001年   760篇
  2000年   551篇
  1999年   519篇
  1998年   349篇
  1997年   304篇
  1996年   247篇
  1995年   229篇
  1994年   211篇
  1993年   176篇
  1992年   150篇
  1991年   177篇
  1990年   129篇
  1989年   108篇
  1988年   71篇
  1987年   61篇
  1986年   52篇
  1985年   84篇
  1984年   68篇
  1983年   48篇
  1982年   36篇
  1981年   38篇
  1980年   29篇
  1979年   24篇
  1978年   18篇
  1977年   20篇
  1976年   18篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 284 毫秒
911.
912.
913.
The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.  相似文献   
914.
In vitro 3D tissue‐engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co‐culture of TE skeletal muscle and bone are investigated. High‐glucose Dulbecco's modified Eagle medium (HG‐DMEM) supplemented with 20% fetal bovine serum followed by HG‐DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co‐cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen‐based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co‐culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.  相似文献   
915.
Biomolecules, especially proteins and nucleic acids, have been widely studied to develop biochips for various applications in scientific fields ranging from bioelectronics to stem cell research. However, restrictions exist due to the inherent characteristics of biomolecules, such as instability and the constraint of granting the functionality to the biochip. Introduction of functional nanomaterials, recently being researched and developed, to biomolecules have been widely researched to develop the nanobiohybrid materials because such materials have the potential to enhance and extend the function of biomolecules on a biochip. The potential for applying nanobiohybrid materials is especially high in the field of bioelectronics. Research in bioelectronics is aimed at realizing electronic functions using the inherent properties of biomolecules. To achieve this, various biomolecules possessing unique properties have been combined with novel nanomaterials to develop bioelectronic devices such as highly sensitive electrochemical‐based bioelectronic sensing platforms, logic gates, and biocomputing systems. In this review, recently reported bioelectronic devices based on nanobiohybrid materials are discussed. The authors believe that this review will suggest innovative and creative directions to develop the next generation of multifunctional bioelectronic devices.  相似文献   
916.
Imbalance between the main intracellular degradative, trafficking and intercellular shuttling pathways has been implicated in disease pathogenesis. Autophagy controls degradation of cellular components, while vesicular trafficking permits transport of material in and out of the cell. Emerging evidence has uncovered the extensive interconnectivity between these pathways, which is crucial to maintain organismal homeostasis. Thus, therapeutic intervention and drug development strategies targeting these processes, particularly in neurodegeneration, should account for this broad crosstalk, to maximize effectiveness. Here, recent findings underlining the highly dynamic nature of the crosstalk between autophagy, endosomal transport, and secretion is reviewed. Synergy of autophagy and endosomes for degradation, as well as, competition of autophagy and secretion are discussed. Perturbation of this crosstalk triggers pathology especially neurodegeneration.  相似文献   
917.
The pandemic outbreaks of coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), spread all over the world in a short period of time. Efficient identification of the infection by SARS‐CoV‐2 has been one of the most important tasks to facilitate all the following counter measurements in dealing with the infectious disease. In Taiwan, a COVID‐19 Open Science Platform adheres to the spirit of open science: sharing sources, data, and methods to promote progress in academic research while corroborating findings from various disciplines has established in mid‐February 2020, for collaborative research in support of the development of detection methods, therapeutics, and a vaccine for COVID‐19. Research priorities include infection control, epidemiology, clinical characterization and management, detection methods (including viral RNA detection, viral antigen detection, and serum antibody detection), therapeutics (neutralizing antibody and small molecule drugs), vaccines, and SARS‐CoV‐2 pathogenesis. In addition, research on social ethics and the law are included to take full account of the impact of the COVID‐19 virus.  相似文献   
918.
Gammaretroviral and lentiviral vectors (γ‐RV and LV) are among the most used vectors in gene therapy. Currently, human embryonic kidney (HEK) 293 cells, the manufacture platform of choice for these vectors, provide low transducing particle yields, challenging their therapeutic applications and commercialization. This work studies metabolic pathways, focusing on endoplasmic reticulum (ER) protein processing and anti‐apoptotic mechanisms, influencing vector productivity in HEK 293 cell substrates. To that end, four candidate genes—protein disulfide isomerase family A member 2 gene, heat shock protein family A (Hsp70) member 5 gene, X‐box binding protein 1 gene (ER protein processing), and B‐cell lymphoma 2 protein gene (anti‐apoptotic)—are individually stably expressed in the cells. How their overexpression level influence vector yields is analyzed by establishing cell populations with incremental genomic copies of each. γ‐RV volumetric productivity increases up to 97% when overexpressing ER protein processing genes. LV volumetric production increases 53% when overexpressing the anti‐apoptotic gene. Improvements are associated with higher cell specific productivities and dependent on gene overexpression level, highlighting the importance of fine‐tuning gene expression. Overall, this work discloses gene engineering targets enabling efficient gene therapy product manufacture showing that ER protein processing and anti‐apoptotic pathways are pivotal to producer cell performance.  相似文献   
919.
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号