首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   63篇
  国内免费   1篇
  2024年   1篇
  2023年   5篇
  2022年   21篇
  2021年   46篇
  2020年   24篇
  2019年   27篇
  2018年   21篇
  2017年   32篇
  2016年   33篇
  2015年   37篇
  2014年   60篇
  2013年   77篇
  2012年   85篇
  2011年   78篇
  2010年   31篇
  2009年   34篇
  2008年   49篇
  2007年   31篇
  2006年   40篇
  2005年   49篇
  2004年   37篇
  2003年   29篇
  2002年   21篇
  2001年   11篇
  2000年   14篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有935条查询结果,搜索用时 46 毫秒
871.

Background  

Rhodobacter sphaeroides 2.4.1 is a metabolically versatile organism that belongs to α-3 subdivision of Proteobacteria. The present study was to identify the extent, history, and role of gene duplications in R. sphaeroides 2.4.1, an organism that possesses two chromosomes.  相似文献   
872.
UNC-104/KIF1A is a Kinesin-3 motor that transports synaptic vesicles from the cell body towards the synapse by binding to PI(4,5)P(2) through its PH domain. The fate of the motor upon reaching the synapse is not known. We found that wild-type UNC-104 is degraded at synaptic regions through the ubiquitin pathway and is not retrogradely transported back to the cell body. As a possible means to regulate the motor, we tested the effect of cargo binding on UNC-104 levels. The unc-104(e1265) allele carries a point mutation (D1497N) in the PI(4,5)P(2) binding pocket of the PH domain, resulting in greatly reduced preferential binding to PI(4,5)P(2)in vitro and presence of very few motors on pre-synaptic vesicles in vivo. unc-104(e1265) animals have poor locomotion irrespective of in vivo PI(4,5)P(2) levels due to reduced anterograde transport. Moreover, they show highly reduced levels of UNC-104 in vivo. To confirm that loss of cargo binding specificity reduces motor levels, we isolated two intragenic suppressors with compensatory mutations within the PH domain. These show partial restoration of in vitro preferential PI(4,5)P(2) binding and presence of more motors on pre-synaptic vesicles in vivo. These animals show improved locomotion dependent on in vivo PI(4,5)P(2) levels, increased anterograde transport, and partial restoration of UNC-104 protein levels in vivo. For further proof, we mutated a conserved residue in one suppressor background. The PH domain in this triple mutant lacked in vitro PI(4,5)P(2) binding specificity, and the animals again showed locomotory defects and reduced motor levels. All allelic variants show increased UNC-104 levels upon blocking the ubiquitin pathway. These data show that inability to bind cargo can target motors for degradation. In view of the observed degradation of the motor in synaptic regions, this further suggests that UNC-104 may get degraded at synapses upon release of cargo.  相似文献   
873.
Previous studies have demonstrated that TGFbeta induces a smooth muscle fate in primary neural crest cells in culture. By crossing a conditional allele of the type II TGFbeta receptor with the neural crest-specific Wnt1cre transgene, we have addressed the in vivo requirement for TGFbeta signaling in smooth muscle specification and differentiation. We find that elimination of the TGFbeta receptor does not alter neural crest cell specification to a smooth muscle fate in the cranial or cardiac domains, and that a smooth muscle fate is not realized by trunk neural crest cells in either control or mutant embryos. Instead, mutant embryos exhibit with complete penetrance two very specific and mechanistically distinct cardiovascular malformations--persistent truncus arteriosus (PTA) and interrupted aortic arch (IAA-B). Pharyngeal organ defects such as those seen in models of DiGeorge syndrome were not observed, arguing against an early perturbation of the cardiac neural crest cell lineage. We infer that TGFbeta is an essential morphogenic signal for the neural crest cell lineage in specific aspects of cardiovascular development, although one that is not required for smooth muscle differentiation.  相似文献   
874.
A simple, sensitive and specific LC-MS/MS method for the simultaneous determination of sulforaphane (SFN) and its major metabolites, the glutathione (SFN-GSH) and N-acetyl cysteine conjugates (SFN-NAC) from biological matrices was developed and validated. The assay procedure involved solid-phase extratcion of all three analytes from rat intestinal perfusate using C2 extraction cartridges, whereas from rat plasma, metabolites were extracted by solid-phase extraction and SFN was extracted by liquid-liquid extraction with ethyl acetate. Chromatographic separation of SFN, SFN-GSH and SFN-NAC was achieved on a C8 reverse phase column with a mobile phase gradient (Mobile Phase A: 10mM ammonium acetate buffer, pH: 4.5 and Mobile Phase B: acetonitrile with 0.1% formic acid) at a flow rate of 0.3 mL/min. The Finnigan LCQ LC-MS/MS was operated under the selective reaction monitoring mode using the electrospray ionization technique in positive mode. The nominal retention times for SFN-GSH, SFN-NAC and SFN were 8.4, 11.0, and 28.2 min,, respectively. The method was linear for SFN and its metabolites with correlation coefficients >0.998 for all analytes. The limit of quantification was 0.01-0.1 microm depending on analyte and matrix, whereas the mean recoveries from spiked plasma and perfusate samples were approximately 90%. The method was further validated according to U.S. Food and Drug Administration guidance in terms of accuracy and precision. Stability of compounds was established in a battery of stability studies, i.e., bench top, auto-sampler and long-term storage stability as well as freeze/thaw cycles. The utility of the assay was confirmed by the analysis of intestinal perfusate and plasma samples from single-pass intestinal perfusion studies with mesenteric vein cannulation in rats.  相似文献   
875.
I/O intensive applications have posed great challenges to computational scientists. A major problem of these applications is that users have to sacrifice performance requirements in order to satisfy storage capacity requirements in a conventional computing environment. Further performance improvement is impeded by the physical nature of these storage media even when state-of-the-art I/O optimizations are employed.In this paper, we present a distributed multi-storage resource architecture, which can satisfy both performance and capacity requirements by employing multiple storage resources. Compared to a traditional single storage resource architecture, our architecture provides a more flexible and reliable computing environment. This architecture can bring new opportunities for high performance computing as well as inherit state-of-the-art I/O optimization approaches that have already been developed. It provides application users with high-performance storage access even when they do not have the availability of a single large local storage archive at their disposal. We also develop an Application Programming Interface (API) that provides transparent management and access to various storage resources in our computing environment. Since I/O usually dominates the performance in I/O intensive applications, we establish an I/O performance prediction mechanism which consists of a performance database and a prediction algorithm to help users better evaluate and schedule their applications. A tool is also developed to help users automatically generate performance data stored in databases. The experiments show that our multi-storage resource architecture is a promising platform for high performance distributed computing.  相似文献   
876.
Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1‐3) and one regulatory (PKAr) subunits to integrate cAMP‐dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down‐regulation of PKAc1 or stabilisation of a dominant‐negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP‐phosphodiesterase. Concordantly, inhibition of the cGMP‐dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP‐phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.  相似文献   
877.
Pseudomonas aeruginosa and Aspergillus fumigatus are the leading bacterial and fungal pathogens in cystic fibrosis (CF). We have shown that Af biofilms are susceptible to Pseudomonas, particularly CF phenotypes. Those studies were performed with a reference virulent non-CF Aspergillus. Pseudomonas resident in CF airways undergo profound genetic and phenotypic adaptations to the abnormal environment. Studies have also indicated Aspergillus from CF patients have unexpected profiles of antifungal susceptibility. This would suggest that Aspergillus isolates from CF patients may be different or altered from other clinical isolates. It is important to know whether Aspergillus may also be altered, as a result of that CF environment, in susceptibility to Pseudomonas. CF Aspergillus proved not different in that susceptibility.  相似文献   
878.
Salmonella typhi, a Gram negative bacterium, has become multidrug resistant (MDR) to wide classes of antibacterials which necessitate an alarming precaution. This study focuses on the binding potential and therapeutic insight of Nano-Fullerene C60 towards virulent targets of Salmonella typhi by computational prediction and preliminary in vitro assays. The clinical isolates of Salmonella typhi were collected and antibiotic susceptibility profiles were assessed. The drug targets of pathogen were selected by rigorous literature survey and gene network analysis by various metabolic network resources. Based on this study, 20 targets were screened and the 3D structures of few drug targets were retrieved from PDB and others were computationally predicted. The structures of nanoleads such as Fullerene C60, ZnO and CuO were retrieved from drug databases. The binding potential of these nanoleads towards all selected targets were predicted by molecular docking. The best docked conformations were screened and concept was investigated by preliminary bioassays. This study revealed that most of the isolates of Salmonella typhi were found to be MDR (p < .05). The theoretical models of selected drug targets showed high stereochemical validity. The molecular docking studies suggested that Fullerene C60 showed better binding affinity towards the drug targets when compared to ZnO and CuO. The preliminary in vitro assays suggested that 100 μg/L Fullerene C60 posses significant inhibitory activities and absence of drug resistance to this nanoparticle. This study suggests that Fullerene C60 can be scaled up as probable lead molecules against the major drug targets of MDR Salmonella typhi.  相似文献   
879.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder is the most common cause of dementia among elderly people. To date, the successful therapeutic strategy to treat AD is maintaining the levels of acetylcholine via inhibiting acetylcholinesterase (AChE). The present study involves identification of newer AChE inhibitors by dual approach of e-pharmacophore and structure-based virtual screening of Asinex library. Robustness of docking protocol was validated by enrichment calculation with ROC value .71 and BEDROC value .028. Among 11 selected hits, ZINC72338524 with best MM-GBSA dG binding shows optimal range of CNS properties and ligand–AChE complex stability. Further, molecular dynamics study revealed its molecular interactions with Trp86, Phe338, and Tyr341 amino acid residues of catalytic anionic site and Tyr124, Ser125, and Trp286 amino acid residues of peripheral anionic site. Physicochemical properties and ADMET risk prediction indicates their potential in druggability and safety.  相似文献   
880.
The present paper describes design, synthesis, and biological evaluation of a series of some 3-[3-(amino)propoxy]benzenamines as acetylcholinesterase inhibitors using mice as a model and piracetam as a reference drug. The structures of these compounds were confirmed by spectral analysis and compounds were tested for memory enhancing activity using elevated plus maze test and acetylcholinesterase inhibitory assay. The inhibitory range of synthesized compounds was from 8.99 to 28.31 μM. The synthesized compounds possessed higher or equivalent percent retention as compared to piracetam at 1 mg/kg with no other CNS-related activities (locomotor and muscle relaxant, analgesic and anticonvulsant activities). Compound 3-[3-(imidazolo)propoxy]benzenamine has shown significant dose-dependent (1 and 3 mg/kg) memory enhancing activity, while 3-[3-(pyrrolidino)propoxy]benzenamine also showed activity equivalent to reference drug piracetam at 1 mg/kg. Both compounds 3-[3-(pyrrolidino)propoxy]benzenamine and 3-[3-(imidazolo)propoxy]benzenamine were also found to show AChE inhibition with IC50 value of 8.99 and 17.87 μM. The molecular docking, MM-GBSA and molecular dynamics simulation studies were performed in order to establish a relationship between the biological results. RMSD, root-mean-square fluctuations, and interaction patterns of 10a–AChE and Sck–AChE complexes proved that the binding affinity of 10a toward AChE was highly stable with the proposed binding orientations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号