首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有47条查询结果,搜索用时 125 毫秒
21.
22.
Ajowan (Trachyspermum ammi L.) spice has been used in food preparations and also as a traditional medicine in Ayurveda. Although a number of pharmacological activities have been attributed to ajowan, its role in immunomodulation is not known. The main objective of the present study is to examine the macromolecular immunomodulatory components. Macrophage activation was studied by nitric oxide (NO) release, phagocytosis and secretion of pro-inflammatory cytokines as the markers. Ethanol precipitate (fractional) of ajowan aqueous extract was subjected to conventional chromatography (Q Sepharose followed by Bio-Gel P-100). One of the proteins (30.7 kDa; ajowan glycoprotein or Agp) showed effective mitogenic activity towards splenocytes. Agp is a O-linked glycoprotein with the glycans contributing to one-third of the molecular mass. It has a high content of glutamic acid, serine, aspartic acid and proline whereas galactose (45.7%), arabinose (34.5%), glucose (7%), mannose (5%) and xylose (4%) are the constituent sugars. Secondary structure analysis indicated that Agp contains 79% α-helices and 21% random coil. Internal sequencing of the tryptic peptides did not show homology with the existing proteins in the database (BLAST). Agp at 1 μg/mL induced proliferation of B-cell enriched murine splenocytes and activated macrophages in releasing NO and promoted phagocytosis (p < 0.01). RAW 264.7 cells produced pro-inflammatory cytokines (IL-12, TNF-α and IFN-γ) at 1 μg/mL Agp (p < 0.01). Deproteinized Agp (dpAgp) failed to elicit activation of murine immune cells, whereas deglycosylated Agp (20 kDa; dgAgp) showed compromised efficiency. This is the first report of an immunomodulatory protein from ajowan.  相似文献   
23.
The Sec61 protein translocation complex in the endoplasmic reticulum (ER) membrane is composed of three subunits. The alpha-subunit, called Sec61p in yeast, is a multispanning membrane protein that forms the protein conducting channel. The functions of the smaller, carboxyl-terminally tail-anchored beta subunit Sbh1p, its close homologue Sbh2p, and the gamma subunit Sss1p are not well understood. Here we show that co-translational protein translocation into the ER is reduced in sbh1Delta sbh2Delta cells, whereas there is a limited reduction of post-translational translocation and no effect on export of a mutant form of alpha-factor precursor for ER-associated degradation in the cytosol. The translocation defect and the temperature-sensitive growth phenotype of sbh1Delta sbh2Delta cells were rescued by expression of the transmembrane domain of Sbh1p alone, and the Sbh1p transmembrane domain was sufficient for coimmunoprecipitation with Sec61p and Sss1p. Furthermore, we show that Sbh1p co-precipitates with the ER transmembrane protein Rtn1p. Sbh1p-Rtn1p complexes do not appear to contain Sss1p and Sec61p. Our results define the transmembrane domain as the minimal functional domain of the Sec61beta homologue Sbh1p in ER translocation, identify a novel interaction partner for Shb1p, and imply that Sbh1p has additional functions that are not directly linked to protein translocation in association with the Sec61 complex.  相似文献   
24.

Background

Characterizing large genomic variants is essential to expanding the research and clinical applications of genome sequencing. While multiple data types and methods are available to detect these structural variants (SVs), they remain less characterized than smaller variants because of SV diversity, complexity, and size. These challenges are exacerbated by the experimental and computational demands of SV analysis. Here, we characterize the SV content of a personal genome with Parliament, a publicly available consensus SV-calling infrastructure that merges multiple data types and SV detection methods.

Results

We demonstrate Parliament’s efficacy via integrated analyses of data from whole-genome array comparative genomic hybridization, short-read next-generation sequencing, long-read (Pacific BioSciences RSII), long-insert (Illumina Nextera), and whole-genome architecture (BioNano Irys) data from the personal genome of a single subject (HS1011). From this genome, Parliament identified 31,007 genomic loci between 100 bp and 1 Mbp that are inconsistent with the hg19 reference assembly. Of these loci, 9,777 are supported as putative SVs by hybrid local assembly, long-read PacBio data, or multi-source heuristics. These SVs span 59 Mbp of the reference genome (1.8%) and include 3,801 events identified only with long-read data. The HS1011 data and complete Parliament infrastructure, including a BAM-to-SV workflow, are available on the cloud-based service DNAnexus.

Conclusions

HS1011 SV analysis reveals the limits and advantages of multiple sequencing technologies, specifically the impact of long-read SV discovery. With the full Parliament infrastructure, the HS1011 data constitute a public resource for novel SV discovery, software calibration, and personal genome structural variation analysis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1479-3) contains supplementary material, which is available to authorized users.  相似文献   
25.
Graphene oxide/chitosan and reduced graphene oxide/chitosan (GO/CS and RGO/CS) beads were prepared by precipitation with NaOH. Porcine liver esterase was immobilized on these beads to give GO/CS/E and RGO/CS/E beads. The optimum conditions for the maximum activity of RGO/CS/E beads were pH 8 and 50°C. The stability of the enzyme immobilized on GO/CS/E and RGO/CS/E was high in the pH range of 5–8. The GO/CS/E beads showed superior stability compared to that of the free enzyme and CS/E beads between 20 and 50°C. Kinetic analysis showed that GO/CS/E was a better catalyst than the RGO/CS/E beads with a lower Km value of 0.9?mM. The hybrid beads also retained more than 95% activity after 10 consecutive cycles. The GO/CS/E and RGO/CS/E beads retained 84% and 87% activity after 40 days at 4°C. The GO/CS/E beads were used for the successful hydrolysis of methyl 4-hydroxy benzoate.  相似文献   
26.
A proteostasis view of neurodegeneration (ND) identifies protein aggregation as a leading causative reason for damage seen at the cellular and organ levels. While investigative therapies that aim at dissolving aggregates have failed, and the promises of silencing expression of ND associated pathogenic proteins or the deployment of engineered induced pluripotent stem cells (iPSCs) are still in the horizon, emerging literature suggests degrading aggregates through autophagy-related mechanisms hold the current potential for a possible cure. Macroautophagy (hereafter autophagy) is an intracellular degradative pathway where superfluous or unwanted cellular cargoes (such as peroxisomes, mitochondria, ribosomes, intracellular bacteria and misfolded protein aggregates) are wrapped in double membrane vesicles called autophagosomes that eventually fuses with lysosomes for their degradation. The selective branch of autophagy that deals with identification, capture and degradation of protein aggregates is called aggrephagy. Here, we cover the workings of aggrephagy detailing its selectivity towards aggregates. The diverse cellular adaptors that bridge the aggregates with the core autophagy machinery in terms of autophagosome formation are discussed. In ND, essential protein quality control mechanisms fail as the constituent components also find themselves trapped in the aggregates. Thus, although cellular aggrephagy has the potential to be upregulated, its dysfunction further aggravates the pathogenesis. This phenomenon when combined with the fact that neurons can neither dilute out the aggregates by cell division nor the dead neurons can be replaced due to low neurogenesis, makes a compelling case for aggrephagy pathway as a potential therapeutic option.  相似文献   
27.
Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer''s Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu.  相似文献   
28.
Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion. Download video file.(111M, mp4)  相似文献   
29.
The family of G protein-coupled receptors that includes receptors for motilin, ghrelin, and growth hormone secretagogue has substantial potential importance as drug targets. Understanding of the molecular basis of hormone binding and receptor activation should provide insights that are helpful in the development of such drugs. We previously examined the unique second extracellular loop domain of the motilin receptor, identifying key epitopes in perimembranous locations at each end of this long loop (Matsuura, B., Dong, M., and Miller, L. J. (2002) J. Biol. Chem. 277, 9834-9839). Here, we have extended that work, examining the other predicted extracellular domains of the motilin receptor by using sequential deletions of segments ranging from one to six amino acid residues and site-directed alanine replacement mutagenesis approaches. Each construct was transiently expressed in COS cells, and characterized for motilin- and erythromycin-stimulated intracellular calcium responses and motilin radioligand binding. Only those receptor segments that included key Cys residues in positions 25, 30, and 111 or perimembranous regions at the ends of the amino terminus and the first and third extracellular loops disrupted motilin biological activity. Each of these Cys deletions also disrupted action of erythromycin. Alanine replacements for each of the potentially important amino acid residues in the perimembranous segments revealed that residues Gly36, Pro103, Leu109, and Phe332 were responsible for the selective negative impact on motilin biological activity, while responding normally to erythromycin. These results support the presence of functionally important disulfide bonds in the motilin receptor ectodomain and demonstrate that the structural determinants for binding and biological activity of peptide and non-peptidyl agonist ligands are distinct, with a broad extracellular perimembranous base contributing to normal motilin binding.  相似文献   
30.
Protein abnormalities are the major cause of neurodegenerative diseases such as spinocerebellar ataxia (SCA). Protein misfolding and impaired degradation leads to the build-up of protein aggregates inside the cell, which may further cause cellular degeneration. Reducing levels of either the soluble misfolded form of the protein or its precipitated aggregate, even marginally, could significantly improve cellular health. Despite numerous pre-existing strategies to target these protein aggregates, there is considerable room to improve their specificity and efficiency. In this study, we demonstrated the enhanced intracellular degradation of both monomers and aggregates of mutant ataxin1 (Atxn1 82Q) by engineering an E3 ubiquitin ligase enzyme, promyelocytic leukemia protein (PML). Specifically, we showed enhanced degradation of both soluble and aggregated Atxn1 82Q in mammalian cells by targeting this protein using PML fused to single chain variable fragments (scFvs) specific for monomers and aggregates of the target protein. The ability to solubilize Atxn1 82Q aggregates was due to the PML-mediated enhanced SUMOylation of the target protein. This ability to reduce the intracellular levels of both misfolded forms of Atxn1 82Q may not only be useful for treating SCA, but also applicable for the treatment of other PolyQ disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号