首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   12篇
  253篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   13篇
  2014年   17篇
  2013年   23篇
  2012年   12篇
  2011年   17篇
  2010年   17篇
  2009年   11篇
  2008年   17篇
  2007年   11篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   6篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   5篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
31.
A new method for solid phase parallel synthesis of chemically and conformationally diverse macrocyclic peptidomimetics is reported. A key feature of the method is access to broad chemical and conformational diversity. Synthesis and mechanistic studies on the macrocyclization step are reported.  相似文献   
32.
Pattern of expression of HtrA1 during mouse development.   总被引:1,自引:0,他引:1  
The human HtrA family of proteases consists of four members: HtrA1, HtrA2, HtrA3, and HtrA4. In humans the four HtrA homologues appear to be involved in several important functions such as cell growth, apoptosis, and inflammatory reactions, and they control cell fate via regulated protein metabolism. In previous studies it was shown that the expression of HtrA1 was ubiquitous in normal adult human tissues. Here we examined the expression of HtrA1 protein and its corresponding mRNA during mouse embryogenesis using Northern blotting hybridization, RT-PCR, and immunohistochemical staining analyses. Our results indicate that HtrA1 is expressed in a variety of tissues in mouse embryos. Furthermore, this expression is regulated in a spatial and temporal manner. Relatively low levels of HtrA1 mRNA are detected in embryos at the beginning of organogenesis (E8), and the levels of expression increase during late organogenesis (E14-E19). Our results show that HtrA1 was expressed during embryonic development in specific areas where signaling by TGFbeta family proteins plays important regulatory roles. The expression of HtrA1, documented both at mRNA and protein levels by RT-PCR and immunohistochemistry in the developing nervous system, is consistent with a possible role of this protein both in dividing and postmitotic neurons, possibly via its documented inhibitory effects on TGFbeta proteins. An exhaustive knowledge of the different cell- and tissue-specific patterns of expression of HtrA1 in normal mouse embryos is essential for a critical evaluation of the exact role played by this protein during development.  相似文献   
33.
34.
35.
Approximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP). Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of ex situ conservation for flowering plants. Spore storage could provide a simple and economical method for fern ex situ conservation. Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation. But what is known about the seed and spore biology (storage and germination) of at-risk species? We have used China's PSESP (the first group listing) as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP), storage characteristics are only known for 8% of PSESP (10 species). Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.  相似文献   
36.
Pure cadmium oxalate trihydrate (COT) and barium added cadmium oxalate (BCO) single crystals were grown by controlled diffusion of Cd2+ and Ba2+ ions in silica gel at ambient temperature. A single test tube technique coupled with gel aging conferred maximum size crystals by controlling the nucleation rate. It was found that the pH and age of the gel greatly influenced the crystal quality, their size and transparency. Grown crystals CdC2O4 · 3H2O and Ba0.5Cd0.5(C2O4)2 · 5H2O were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. Effect of barium dopant on the growth and morphology of cadmium oxalate was studied. Pure cadmium oxalate crystallized in triclinic system and the barium-doped cadmium oxalate crystallized in hexagonal system with massive changes in their unit cell parameters. The infrared spectrum revealed the presence of oxalate ligands and water of hydration in both the pure and barium-doped crystals. Thermal analysis showed that the grown crystals were dehydrated thermally even from lower temperatures and the doped crystals were found more stable.  相似文献   
37.
Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Δ) complemented the Rin1 depletion effects, and overexpression of Rin1Δ had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature.Internalization of epidermal growth factor receptors (EGFR)2 and their subsequent delivery to lysosomes play key roles in attenuating EGF-mediated signaling cascades (1, 2). The proper delivery of EGFR into lysosomes for degradation requires a series of highly regulated targeting and delivery events. Following ligand binding, EGFR is internalized via endocytic vesicles that are subsequently targeted to early endosomes. This targeting event is mediated by the small GTPase, Rab5 (3, 4). Once delivered to the early endosome, receptors that are destined for degradation are incorporated into vesicles that bud into the lumen of the endosome, forming the multivesicular body (reviewed in Refs. 5, 6). Sequestration of the activated cytoplasmic domain of EGFR into the intralumenal vesicles of the multivesicular body effectively terminates receptor signaling (7). Subsequent fusion of the multivesicular body with lysosomes delivers the intralumenal vesicles and their contents into the lumen of the lysosome where they are degraded (reviewed in Refs. 810). Inactivating mutations in Rab5 disrupt the delivery of cell surface receptors, such as EGFR, to early endosomes, thereby inhibiting receptor trafficking to the lysosome and receptor degradation (11, 12). Therefore, activation of Rab5 is a key point of regulation for EGFR signaling.Rab5 cycles between an inactive GDP-bound state and an active GTP-bound state, and Rab5 activation requires the exchange of GDP to GTP. This exchange is catalyzed by guanine nucleotide exchange factors (GEFs) that are specific to the Rab5 family of proteins (reviewed in Ref. 13). Rab5 family GEFs all contain a catalytic vacuolar protein sorting 9 (Vps9) domain that facilitates the GDP to GTP exchange (1417). Many Rab5 GEFs contain other functional domains that are involved in cell signaling events (13). Rin1 is a good example of a multidomain Rab5 GEF. In addition to the Vps9 domain, Rin1 also contains an Src homology 2 domain, a proline-rich domain, and a Ras association domain. Rin1 was originally identified through its ability to interact with active Ras (18), and a role for Rin1 in a number of cell signaling systems has been established, including EGF-mediated signaling (1921). Rin1 directly interacts with the activated EGFR through its Src homology 2 domain (22). Furthermore, Ras occupation of the Rin1 Ras association domain positively impacts the Rab5 GEF activity of Rin1, which promotes EGFR internalization and attenuation in fibroblasts (23). However, Rin1 expression is up-regulated in several types of cancers, including squamous cell carcinoma (24), colorectal cancer (25), and cervical cancer (26), through duplications or rearrangements of the RIN1 locus. These studies suggest that Rin1 may also play a role in enhancing cell proliferation.It is well established that a large percentage of non-small cell lung adenocarcinomas exhibit up-regulation of EGFR and aberrant signaling through the Ras/MAPK pathway (reviewed in Ref. 27). In addition, a recent study examining 188 human lung adenocarcinomas identified that 132 of 188 tumor samples exhibited mutations relating to the Ras/MAPK signaling pathway (28). Accordingly, the role of Rin1 in non-small cell lung adenocarcinoma was addressed. Examination of a panel of non-small cell lung adenocarcinoma lines (including A549) revealed enhanced Rin1 expression relative to a nontransformed lung epithelial cell line (BEAS-2B). Depletion of Rin1 from A549 cells resulted in decreased proliferation. This decrease correlated with a reduction in EGF-activated ERK phosphorylation and the stabilization of cell surface EGFR. These defects were complemented by wild type Rin1 expression but not by mutant Rin1 lacking a functional Vps9 domain, suggesting that the GEF activity of Rin1 is necessary for proper EGFR signaling in A549 cells. In addition, overexpression of Rin1Δ, dominant negative Rab5, and dynamin resulted in similar defects in cell proliferation and EGFR signaling as Rin1 depletion. These data indicate that proper EGFR internalization and trafficking are critical for robust EGFR-mediated signaling and cell proliferation in A549 cells and offer evidence that Rin1 positively regulates cell proliferation in non-small cell lung adenocarcinoma.  相似文献   
38.
Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter , the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery.  相似文献   
39.
Heterogeneity in morphology, physiology and cellular chemistry of plant tissues can compromise successful cryoprotection and cryopreservation. Cryoprotection is a function of exposure time × temperature × permeability for the chosen protectant and diffusion pathway length, as determined by specimen geometry, to provide sufficient dehydration whilst avoiding excessive chemical toxicity. We have developed an innovative method of vacuum infiltration vitrification (VIV) at 381 mm (15 in) Hg (50 kPa) that ensures the rapid (5 min), uniform permeation of Plant Vitrification Solution 2 (PVS2) cryoprotectant into plant embryos and their successful cryopreservation, as judged by regrowth in vitro. This method was validated on zygotic embryos/embryonic axes of three species (Carica papaya, Passiflora edulis and Laurus nobilis) up to 1.6 mg dry mass and 5.6 mm in length, with varying physiology (desiccation tolerances) and 80°C variation in lipid thermal profiles, i.e., visco-elasticity properties, as determined by differential scanning calorimetry. Comparisons between the melting features of cryoprotected embryos and embryo regrowth indicated an optimal internal PVS2 concentration of about 60% of full strength. The physiological vigour of surviving embryos was directly related to the proportion of survivors. Compared with conventional vitrification, VIV-cryopreservation offered a ∼ 10-fold reduction in PVS2 exposure times, higher embryo viability and regrowth and greater effectiveness at two pre-treatment temperatures (0°C and 25°C). VIV-cryopreservation may form the basis of a generic, high throughput technology for the ex situ conservation of plant genetic resources, aiding food security and protection of species from diverse habitats and at risk of extinction.  相似文献   
40.
Several microRNAs have been implicated in neurogenesis, neuronal differentiation, neurodevelopment, and memory. Development of miRNA-based therapeutics, however, needs tools for effective miRNA modulation, tissue-specific delivery, and in vivo evidence of functional effects following the knockdown of miRNA. Expression of miR-29a is reduced in patients and animal models of several neurodegenerative disorders, including Alzheimer''s disease, Huntington''s disease, and spinocerebellar ataxias. The temporal expression pattern of miR-29b during development also correlates with its protective role in neuronal survival. Here, we report the cellular and behavioral effect of in vivo, brain-specific knockdown of miR-29. We delivered specific anti-miRNAs to the mouse brain using a neurotropic peptide, thus overcoming the blood-brain-barrier and restricting the effect of knockdown to the neuronal cells. Large regions of the hippocampus and cerebellum showed massive cell death, reiterating the role of miR-29 in neuronal survival. The mice showed characteristic features of ataxia, including reduced step length. However, the apoptotic targets of miR-29, such as Puma, Bim, Bak, or Bace1, failed to show expected levels of up-regulation in mice, following knockdown of miR-29. In contrast, another miR-29 target, voltage-dependent anion channel1 (VDAC1), was found to be induced several fold in the hippocampus, cerebellum, and cortex of mice following miRNA knockdown. Partial restoration of apoptosis was achieved by down-regulation of VDAC1 in miR-29 knockdown cells. Our study suggests that regulation of VDAC1 expression by miR-29 is an important determinant of neuronal cell survival in the brain. Loss of miR-29 results in dysregulation of VDAC1, neuronal cell death, and an ataxic phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号