首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   40篇
  国内免费   2篇
  561篇
  2023年   2篇
  2022年   10篇
  2021年   28篇
  2020年   19篇
  2019年   24篇
  2018年   23篇
  2017年   22篇
  2016年   36篇
  2015年   44篇
  2014年   45篇
  2013年   33篇
  2012年   52篇
  2011年   32篇
  2010年   35篇
  2009年   23篇
  2008年   22篇
  2007年   20篇
  2006年   14篇
  2005年   9篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1962年   1篇
排序方式: 共有561条查询结果,搜索用时 15 毫秒
61.
The use of polydopamine as a nitrogen containing precursor to generate catalytically active nitrogen‐doped carbon (CNx) materials on carbon nanotubes (CNTs) is reported. These N‐doped CNx/CNT materials display excellent electrocatalytic activity toward the reduction of triiodide electrolyte in dye‐sensitized solar cells (DSSCs). Further, the influence of various synthesis parameters on the catalytic performance of CNx/CNTs is investigated in detail. The best performing device fabricated with the CNx/CNTs material delivers power conversion efficiency of 7.3%, which is comparable or slightly higher than that of Pt (7.1%) counter electrode‐based DSSC. These CNx/CNTs materials show great potential to address the issues associated with the Pt electrocatalyst including the high cost and scarcity.  相似文献   
62.
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes ω-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework.The biopolymer sporopollenin is the major component of the outer walls in pollen and spores (exines). It is highly resistant to nonoxidative physical, chemical, and biological treatments and is insoluble in both aqueous and organic solvents. While the stability and resistance of sporopollenin account for the preservation of ancient pollen grains for millions of years with nearly full retention of morphology (Doyle and Hickey, 1976; Friis et al., 2001), these same qualities make it extremely difficult to study the chemical structure of sporopollenin. Thus, although the first studies on the composition of sporopollenin were reported in 1928 (Zetzsche and Huggler, 1928), the exact structure of sporopollenin remains unresolved. At present, it is thought that sporopollenin is a complex polymer primarily made of a mixture of fatty acids and phenolic compounds (Guilford et al., 1988; Wiermann et al., 2001).Fatty acids were first implicated as sporopollenin components when ozonolysis of Lycopodium clavatum and Pinus sylvestris exine yielded significant amounts of straight- and branched-chain monocarboxylic acids, characteristic fatty acid breakdown products (Shaw and Yeadon, 1966). More recently, improved purification and degradation techniques coupled with analytical methods, such as solid-state 13C-NMR spectroscopy, Fourier transform infrared spectroscopy, and 1H-NMR, have shown that sporopollenin is made up of polyhydroxylated unbranched aliphatic units and also contains small amounts of oxygenated aromatic rings and phenylpropanoids (Guilford et al., 1988; Ahlers et al., 1999; Domínguez et al., 1999; Bubert et al., 2002). Biochemical studies using thiocarbamate herbicide inhibition of the chain-elongating steps in the synthesis of long-chain fatty acids and radioactive tracer experiments provided further evidence that lipid metabolism is involved in the biosynthesis of sporopollenin (Wilwesmeier and Wiermann, 1995; Meuter-Gerhards et al., 1999).Relatively little is known about the genetic network that determines sporopollenin synthesis. However, several Arabidopsis (Arabidopsis thaliana) genes implicated in exine biosynthesis encode proteins with sequence homology to enzymes that are involved in fatty acid metabolism. Mutations in MALE STERILITY2 (MS2) eliminate exine and affect a protein with sequence similarity to fatty acyl reductases; the predicted inability of ms2 plants to reduce pollen wall fatty acids to the corresponding alcohols suggests that this reaction is a key step in sporopollenin synthesis (Aarts et al., 1997). The FACELESS POLLEN1 (FLP1) gene, whose loss causes the flp1 exine defect, encodes a protein similar to those involved in wax synthesis (Ariizumi et al., 2003). The no exine formation1 (nef1) mutant accumulates reduced levels of lipids, and the NEF1 protein was suggested to be involved in either lipid transport or the maintenance of plastid membrane integrity, including those plastids in the secretory tapetum of anthers, where many of the sporopollenin components are synthesized (Ariizumi et al., 2004). The dex2 mutant has mutations in the evolutionarily conserved anther-specific cytochrome P450, CYP703A2 (Morant et al., 2007), which catalyzes in-chain hydroxylation of saturated medium-chain fatty acids, with lauric acid (C12:0) as a preferred substrate (Morant et al., 2007). A recently described gene, ACOS5, encodes a fatty acyl-CoA synthetase that has in vitro preference for medium-chain fatty acids (de Azevedo Souza et al., 2009). Mutations in all of these genes compromise exine formation.Here, we describe an evolutionarily conserved cytochrome P450, CYP704B1, and demonstrate that this gene is essential for exine biosynthesis and plays a role different from that of CYP703A2. Heterologously expressed CYP704B1 catalyzed ω-hydroxylation of several saturated and unsaturated C14-C18 fatty acids. These results suggest the possibility that ω-hydroxylated fatty acids produced by CYP704B1, together with in-chain hydroxylated lauric acids provided by the action of CYP703A2, may serve as key monomeric aliphatic building blocks in sporopollenin formation. Analyses of the genetic relationships between CYP704B1, MS2, and CYP703A2 suggest that all three genes are involved in the same pathway within the sporopollenin biosynthesis framework.  相似文献   
63.
64.
Phagocytosis is a hemocytic behavior against bacterial infection. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits immune responses of target insects and causes hemolymph septicemia. This study analyzed how X. nematophila could inhibit phagocytosis to increase its pathogenicity. Granular cells and plasmatocytes were the main phagocytic hemocytes of Spodoptera exigua determined by observing fluorescence-labeled bacteria in the cytosol. X. nematophila significantly inhibited phagocytosis of both hemocytes, while heat-killed X. nematophila lost its inhibitory potency. However, co-injection of X. nematophila with arachidonic acid did not show any significant inhibition of hemocyte phagocytosis. In fact, hemocytes of S. exigua infected with X. nematophila showed significant reduction in phospholipase A(2) (PLA(2)) activity. Dexamethasone, a specific PLA(2) inhibitor, significantly inhibited phagocytosis of both cell types. However, the inhibitory effect of dexamethasone was recovered by addition of arachidonic acid. Incubation of hemocytes with benzylideneacetone, a metabolite of X. nematophila, inhibited phagocytosis in a dose-dependent manner. These results suggest that X. nematophila produces and secretes PLA(2) inhibitor(s), which in turn inhibit the phagocytic response of hemocytes.  相似文献   
65.
Bacterial over-expression of kinases is often associated with high levels of auto-phosphorylation resulting in heterogeneous recombinant protein preparations or sometimes in insoluble protein. Here we present expression systems for nine kinases in Escherichia coli and, for the most heavily phosphorylated, the characterisation of factors affecting auto-phosphorylation. Experiments showed that the level of auto-phosphorylation was proportional to the rate of expression. Comparison of phosphorylation states following in vitro phosphorylation with phosphorylation states following expression in E. coli showed that the non-physiological 'hyper-phosphorylation' was occurring at sites that would require local unfolding to be accessible to a kinase active site. In contrast, auto-phosphorylation on unphosphorylated kinases that had been expressed in bacteria overexpressing λ-phosphatase was only observed on distinct exposed sites. Remarkably, the Ser/Thr kinase PLK4 auto-phosphorylated on a tyrosine residue (Tyr177) located in the activation segment. The results give support to a mechanism in which auto-phosphorylation occurs before or during protein folding. In addition, the expression systems and protocols presented will be a valuable resource to the research community.  相似文献   
66.

Background

Enteric fever remains an important cause of morbidity in many low-income countries and Salmonella Paratyphi A has emerged as the aetiological agent in an increasing proportion of cases. Lack of adequate diagnostics hinders early diagnosis and prompt treatment of both typhoid and paratyphoid but development of assays to identify paratyphoid has been particularly neglected. Here we describe the development of a rapid and sensitive blood culture PCR method for detection of Salmonella Paratyphi A from blood, potentially allowing for appropriate diagnosis and antimicrobial treatment to be initiated on the same day.

Methods

Venous blood samples from volunteers experimentally challenged orally with Salmonella Paratyphi A, who subsequently developed paratyphoid, were taken on the day of diagnosis; 10 ml for quantitative blood culture and automated blood culture, and 5 ml for blood culture PCR. In the latter assay, bacteria were grown in tryptone soy broth containing 2.4% ox bile and micrococcal nuclease for 5 hours (37°C) before bacterial DNA was isolated for PCR detection targeting the fliC-a gene of Salmonella Paratyphi A.

Results

An optimized broth containing 2.4% ox bile and micrococcal nuclease, as well as a PCR test was developed for a blood culture PCR assay of Salmonella Paratyphi A. The volunteers diagnosed with paratyphoid had a median bacterial burden of 1 (range 0.1–6.9) CFU/ml blood. All the blood culture PCR positive cases where a positive bacterial growth was shown by quantitative blood culture had a bacterial burden of ≥ 0.3 CFU/ ml blood. The blood culture PCR assay identified an equal number of positive cases as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood), but utilized only half the volume of specimens.

Conclusions

The blood culture PCR method for detection of Salmonella Paratyphi A can be completed within 9 hours and offers the potential for same-day diagnosis of enteric fever. Using 5 ml blood, it exhibited a lower limit of detection equal to 0.3 CFU/ml blood, and it performed at least as well as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood) of clinical specimens despite using half the volume of blood. The findings warrant its further study in endemic populations with a potential use as a novel diagnostic which fills the present gap of paratyphoid diagnostics.  相似文献   
67.
Modeling the distributions of species, especially of invasive species in non‐native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species–environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our ‘best’ model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium. However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed.  相似文献   
68.
Red panda Ailurus fulgens, an endangered habitat specialist, inhabits a narrow distribution range in bamboo abundance forests along mountain slopes in the Himalaya and Hengduan Mountains. However, their habitat use may be different in places with different longitudinal environmental gradients, climatic regimes, and microclimate. This study aimed to determine the habitat variables affecting red panda distribution across different longitudinal gradients through a multivariate analysis. We studied habitat selection patterns along the longitudinal gradient in Nepal's Himalaya which is grouped into the eastern, central, and western complexes. We collected data on red panda presence and habitat variables (e.g., tree richness, canopy cover, bamboo abundance, water availability, tree diameter, tree height) by surveys along transects throughout the species’ potential range. We used a multimodal inference approach with a generalized linear model to test the relative importance of environmental variables. Although the study showed that bamboo abundance had a major influence, habitat selection was different across longitudinal zones. Both canopy cover and species richness were unimportant in eastern Nepal, but their influence increased progressively toward the west. Conversely, tree height showed a decreasing influence on habitat selection from Eastern to Western Nepal. Red panda's habitat selection revealed in this study corresponds to the uneven distribution of vegetation assemblages and the dry climatic gradient along the eastern‐western Himalayas which could be related to a need to conserve energy and thermoregulate. This study has further highlighted the need of importance of bamboo conservation and site‐specific conservation planning to ensure long‐term red panda conservation.  相似文献   
69.
For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15N and 13C with yields comparable to expression in full media. For 2H,15N and 2H,13C,15N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号