首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   16篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   9篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   12篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   12篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
91.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive function. Existing evidence indicates that abnormal processing and extracellular deposition of the longer form of the amyloid peptide Abeta(1-42), a proteolytic derivative of the amyloid precursor protein (APP), is a key step in the pathogenesis of AD. Active immunization with Abeta(1-42) has been shown to decrease brain beta deposition and improve cognitive performance in mouse models of AD. In the present study, we sought to express the synthetic gene encoding AB in Escherichia coli to enable rapid production of the antigen and its purification. The synthetic gene has been constructed from six oligonucleotides by employing overlapping PCR strategy and expressed in E. coli using the T7 promoter system. The recombinant peptide has been purified to homogeneity by a single step Ni+2 affinity chromatography. Enzyme-linked immunosorbent assay (ELISA) using polyclonal anti-Abeta(1-42) sera confirms that the corresponding linear B-cell epitopic sequences are available for immunorecognition in the recombinant peptide. This methodology enables rapid, continuous production and purification in bulk amounts of human Abeta sequence by employing bacterial expression system  相似文献   
92.
Oxidative stress resistant Deinococcus radiodurans surprisingly exhibited moderate sensitivity to tellurite induced oxidative stress (LD50 = 40 μM tellurite, 40 min exposure). The organism reduced 70% of 40 μM potassium tellurite within 5 h. Tellurite exposure significantly modulated cellular redox status. The level of ROS and protein carbonyl contents increased while the cellular reduction potential substantially decreased following tellurite exposure. Cellular thiols levels initially increased (within 30 min) of tellurite exposure but decreased at later time points. At proteome level, tellurite resistance proteins (TerB and TerD), tellurite reducing enzymes (pyruvate dehydrogense subunits E1 and E3), ROS detoxification enzymes (superoxide dismutase and thioredoxin reductase), and protein folding chaperones (DnaK, EF‐Ts, and PPIase) displayed increased abundance in tellurite‐stressed cells. However, remarkably decreased levels of key metabolic enzymes (aconitase, transketolase, 3‐hydroxy acyl‐CoA dehydrogenase, acyl‐CoA dehydrogenase, electron transfer flavoprotein alpha, and beta) involved in carbon and energy metabolism were observed upon tellurite stress. The results demonstrate that depletion of reduction potential in intensive tellurite reduction with impaired energy metabolism lead to tellurite toxicity in D. radiodurans.  相似文献   
93.
The involvement of signal transduction in the repair of radiation-induced damage to DNA has been known in eukaryotes but remains understudied in bacteria. This article for the first time demonstrates a role for the periplasmic lipoprotein (YfgL) with protein kinase activity transducing a signal for DNA strand break repair in Escherichia coli. Purified YfgL protein showed physical as well as functional interaction with pyrroloquinoline-quinone in solution and the protein kinase activity of YfgL was strongly stimulated in the presence of pyrroloquinoline-quinone. Transgenic E. coli cells producing Deinococcus radiodurans pyrroloquinoline-quinone synthase showed nearly four log cycle improvement in UVC dark survival and 10-fold increases in gamma radiation resistance as compared with untransformed cells. Pyrroloquinoline-quinone enhanced the UV resistance of E. coli through the YfgL protein and required the active recombination repair proteins. The yfgL mutant showed higher sensitivity to UVC, mitomycin C and gamma radiation as compared with wild-type cells and showed a strong impairment in homologous DNA recombination. The mutant expressing an active YfgL in trans recovered the lost phenotypes to nearly wild-type levels. The results strongly suggest that the periplasmic phosphoquinolipoprotein kinase YfgL plays an important role in radiation-induced DNA strand break repair and homologous recombination in E. coli.  相似文献   
94.
A hypothetical protein (DR2310) from the radiation resistant organism Deinococcus radiodurans harbors highly conserved Zn(+2)-binding (HEXXH) domain and Met-turn (SVMSY), characteristic of the serralysin family of secreted metalloproteases from Gram negative bacteria. Deletion mutagenesis of DR2310 confirmed that the ORF is expressed in Deinococcus radiodurans as a secreted protease of 85 kDa. Biochemical analysis revealed DR2310 to be a Ca(+2) and Zn(+2)-requiring metalloprotease. Unique features such as a long N-terminus, replacement of the highly conserved C-terminal glycine rich Ca(+2)-binding repeats with a single N-terminal aspartate rich eukaryotic thrombospondin type-3 Ca(+2)-binding repeat and absence of C-terminal secretion signals make it a novel member of serralysin family. This is the first report of a functional serralysin family metalloprotease from a Gram positive organism.  相似文献   
95.
In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction pathways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduction pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regulation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.  相似文献   
96.
Predicting recruitment fluctuations of fish populations remains the Holy Grail of fisheries science. While previous work has linked recruitment of reef fish to environmental variables including temperature, the demonstration of a robust relationship with productivity remains elusive. Despite decades of research, empirical evidence to support this critical link remains limited. Here we identify a consistent and strong relationship between recruitment of a temperate wrasse Coris julis, from temperate reefs in the mid-Atlantic region, with Chlorophyll, over contrasting scales, across multiple years. Additionally, we find that the correlation between Chlorophyll and recruitment is not simply masking a temperature-recruitment relationship. Understanding the potential mechanisms underlying recruitment variability, particularly as it relates to changing climate and ocean regimes, is a critical first step towards characterizing species’ vulnerability to mismatches between pulsed planktonic production and early pelagic life stages.  相似文献   
97.
Proteolytic activity is required for several key processes in cancer development and progression, including tumor growth, invasion and metastasis. Accordingly, high levels of protease expression and activity have been found to correlate with malignant progression and poor patient prognosis in a wide variety of human cancers. Members of the papain family of cysteine cathepsins are among the protease classes that have been functionally implicated in cancer. Therefore, the discovery of effective cathepsin inhibitors has considerable potential for anti-cancer therapy. In this study we describe the identification of a novel, reversible cathepsin inhibitor, VBY-825, which has high potency against cathepsins B, L, S and V. VBY-825 was tested in a pre-clinical model of pancreatic islet cancer and found to significantly decrease tumor burden and tumor number. Thus, the identification of VBY-825 as a new and effective anti-tumor drug encourages the therapeutic application of cathepsin inhibitors in cancer.  相似文献   
98.
99.
Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU) for such a scenario. It uses models trained using physicochemical properties and evolutionary information of 650 non-redundant enzymes (2136 catalytic residues) in a support vector machines architecture. Independent testing on 200 non-redundant enzymes (683 catalytic residues) in predefined prediction settings, i.e., with non-catalytic per catalytic residue ranging from 1 to 30, suggested that the prediction approach was highly sensitive and specific, i.e., 80% or above, over the incremental challenges. To learn more about the discriminatory power of PINGU in real scenarios, where the prediction challenge is variable and susceptible to high false positives, the best model from independent testing was used on 60 diverse enzymes. Results suggested that PINGU was able to identify most catalytic residues and non-catalytic residues properly with 80% or above accuracy, sensitivity and specificity. The effect of false positives on precision was addressed in this study by application of predicted ligand-binding residue information as a post-processing filter. An overall improvement of 20% in F-measure and 0.138 in Correlation Coefficient with 16% enhanced precision could be achieved. On account of its encouraging performance, PINGU is hoped to have eventual applications in boosting enzyme engineering and novel drug discovery.  相似文献   
100.
Candidatus Liberibacter’ species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from ‘Candidatus Liberibacter asiaticus’ (Las). In order to gain greater insight into ‘Ca. Liberibacter’ biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse ‘Ca. Liberibacter’ species, including those that can infect citrus. Our phylogenetic analysis differentiates ‘Ca. Liberibacter’ species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic ‘Ca. Liberibacter’ species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of ‘Ca. Liberibacter’ species, the introduction of Las in the United States and identifies promising Las targets for disease management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号