首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   27篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2016年   6篇
  2015年   9篇
  2014年   17篇
  2013年   36篇
  2012年   20篇
  2011年   18篇
  2010年   13篇
  2009年   13篇
  2008年   24篇
  2007年   24篇
  2006年   28篇
  2005年   32篇
  2004年   33篇
  2003年   29篇
  2002年   26篇
  2001年   3篇
  2000年   4篇
  1999年   13篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   8篇
  1985年   9篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   8篇
  1980年   8篇
  1979年   4篇
  1978年   10篇
  1977年   4篇
  1976年   10篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1970年   3篇
排序方式: 共有526条查询结果,搜索用时 423 毫秒
441.
Brassinosteroids regulate grain filling in rice   总被引:10,自引:0,他引:10  
Genes controlling hormone levels have been used to increase grain yields in wheat (Triticum aestivum) and rice (Oryza sativa). We created transgenic rice plants expressing maize (Zea mays), rice, or Arabidopsis thaliana genes encoding sterol C-22 hydroxylases that control brassinosteroid (BR) hormone levels using a promoter that is active in only the stems, leaves, and roots. The transgenic plants produced more tillers and more seed than wild-type plants. The seed were heavier as well, especially the seed at the bases of the spikes that fill the least. These phenotypic changes brought about 15 to 44% increases in grain yield per plant relative to wild-type plants in greenhouse and field trials. Expression of the Arabidopsis C-22 hydroxylase in the embryos or endosperms themselves had no apparent effect on seed weight. These results suggested that BRs stimulate the flow of assimilate from the source to the sink. Microarray and photosynthesis analysis of transgenic plants revealed evidence of enhanced CO2 assimilation, enlarged glucose pools in the flag leaves, and increased assimilation of glucose to starch in the seed. These results further suggested that BRs stimulate the flow of assimilate. Plants have not been bred directly for seed filling traits, suggesting that genes that control seed filling could be used to further increase grain yield in crop plants.  相似文献   
442.
Photoreceptors, phytochromes and cryptochromes regulate hypocotyl growth under specific conditions, by suppressing negative gravitropism, modulating phototropism and inhibiting elongation. Although these effects seem to be partially caused via the regulation of the phytohormone auxin, the molecular mechanisms underlying this process are still poorly understood. In our present study, we demonstrate that the flabby mutation enhances both phytochrome- and cryptochrome-inducible hypocotyl bending in Arabidopsis. The FLABBY gene encodes the ABC-type auxin transporter, PGP19, and its expression is suppressed by the activation of phytochromes and cryptochromes. Our current results therefore indicate that the phytochromes and cryptochromes have at least two effects upon the tropic responses of the hypocotyls in Arabidopsis: the enhancement of hypocotyl bending through the suppression of PGP19, and a PGP19-independent mechanism that induces hypocotyl bending. By the using an auxin polar transport assay and DR5:GUS expression analysis, we further find that the phytochromes inhibit basipetal auxin transport, and induce the asymmetric distribution of auxin in the hypocotyls. These data suggest that the control of auxin transport by phytochromes and cryptochromes is a critical regulatory component of hypocotyl growth in response to light.  相似文献   
443.
444.
In this issue we described a dwarf mutant in Arabidopsis thaliana, sax1, which is affected in brassinosteroid biosynthesis. This primary defect is responsible for alterations in hormone sensitivity of sax1 plants characterized by the hypersensitivity of root elongation to abscisic acid and auxin and the insensitivity of hypocotyl growth to gibberellins and ethylene (Ephritikhine et al., 1999; Plant J. 18, 303-314). In this paper, we report the further characterization of the sax1 mutant aimed at identification of the mutated step in the brassinosteroid biosynthesis pathway. Rescue experiments with various intermediates of the pathway showed that the sax1 mutation alters a very early step catalyzing the oxidation and isomerization of 3 beta-hydroxyl, delta 5,6 precursors to 3-oxo, delta 4,5 steroids. The mapping of the mutation, the physiological properties of the mutant and the rescue experiments indicate that sax1 defines a new locus in the brassinosteroid biosynthesis pathway. The SAX1 protein is involved in brassinosteroid-dependent growth of seedlings in both light and dark conditions.  相似文献   
445.
We have identified a rice (Oryza sativa) brassinosteroid (BR)-deficient mutant, BR-deficient dwarf2 (brd2). The brd2 locus contains a single base deletion in the coding region of Dim/dwf1, a homolog of Arabidopsis thaliana DIMINUTO/DWARF1 (DIM/DWF1). Introduction of the wild-type Dim/dwf1 gene into brd2 restored the normal phenotype. Overproduction and repression of Dim/dwf1 resulted in contrasting phenotypes, with repressors mimicking the brd2 phenotype and overproducers having large stature with increased numbers of flowers and seeds. Although brd2 contains low levels of common 6-oxo-type BRs, the severity of the brd2 phenotype is much milder than brd1 mutants and most similar to d2 and d11, which show a semidwarf phenotype at the young seedling stage. Quantitative analysis suggested that in brd2, the 24-methylene BR biosynthesis pathway is activated and the uncommon BR, dolichosterone (DS), is produced. DS enhances the rice lamina joint bending angle, rescues the brd1 dwarf phenotype, and inhibits root elongation, indicating that DS is a bioactive BR in rice. Based on these observations, we discuss an alternative BR biosynthetic pathway that produces DS when Dim/dwf1 is defective.  相似文献   
446.
In contrast to angiosperms, some gymnosperms form well-developed suspensors in somatic embryogenesis. This characteristic makes it easy to study suspensor biology. In cultures with high cell densities, somatic embryogenesis of Japanese larch, especially the suspensor development, is strongly inhibited due to factor(s) that are released by the cells into the culture medium. In this study, we purified and identified one of the inhibitory factors present in high-cell-density conditioned medium (HCM) of larch cells. The factor with the strongest inhibitory activity was purified by dialysis, extraction by ethyl acetate, octadecylsilyl (ODS) column chromatography and high-performance liquid chromatography (HPLC). The inhibitory factor was identified as vanillyl benzyl ether (VBE) by physicochemical analysis. This compound was first isolated from natural resources. Authentic VBE inhibited somatic embryo formation in Japanese larch, and the inhibitory effect in the suspensor was stronger than in the embryo proper. Furthermore, quantification of VBE by HPLC demonstrated that VBE accumulates at high concentrations in HCM. These results suggest that VBE is a novel negative regulator of somatic embryogenesis.  相似文献   
447.
The Arabidopsis frill1 (frl1) mutant, that has serrated petals and sepals but no other large changes in plant morphology, was studied. The frl1 had a mutation in STEROL METHYLTRANSFERASE 2 and an altered sterol composition. It was found that the frl1 mutation causes ectopic endoreduplication in petal tips that do not normally endoreduplicate. The rosette leaves of frl1 also showed an enhanced level of endoreduplication, but their morphology was hardly affected. These facts suggest that the suppression of endoreduplication is important for petal morphogenesis and the normal sterol composition is required for this suppression.  相似文献   
448.
We have previously reported that Brazilian propolis extracts inhibited growth of HL-60 human myeloid leukemia cells, which is partly attributed to the induction of apoptosis associated with granulocytic differentiation. In this study, we isolated three compounds which induce granulocytic differentiation evaluated by nitroblue tetrazolium (NBT)-reducing assays from the water extract of propolis and identified as 4,5-di-O-caffeoylquinic, 3,5-di-O-caffeoylquinic, and 3,4-di-O-caffeoylquinic acids by NMR analysis. Cell growth inhibitory activity of these caffeoylquinic acids was found in HL-60 cell, which was mainly attributed to the induction of apoptosis. Furthermore, the potency of caffeoylquinic acid derivatives to induce granulocytic differentiation was examined in HL-60 cells. Caffeic, quinic, and chlorogenic acids had no effects on the NBT-reducing activity, while 3,4,5-tri-O-caffeoylquinic acid induced more than 30% of NBT-positive cells. These results suggest that the number of the caffeoyl groups bound to quinic acid plays an important role in the potency of the caffeoylquinic acid derivatives to induce granulocytic differentiation. This is the first report demonstrating that the caffeoylquinic acid derivatives induce granulocytic differentiation of HL-60 cells.  相似文献   
449.
Cryoprecipitating IgG3 autoantibodies have been shown to play a significant role in the development of murine lupus-like autoimmune syndrome. However, the structural basis of IgG3 cryoprecipitation still remains to be defined. In view of the implication of positively charged amino acid residues present in variable regions in IgG3 cryoglobulin activity, we explored the role of terminal sialic acids in oligosaccharide side chains for the cryogenic activity of IgG3 mAb. Comparative oligosaccharide structural analysis of different cryogenic and non-cryogenic IgG3 mAb showed an inverse correlation between the extent of sialylation and cryogenic activity. The inhibitory role of sialylation was further confirmed by the demonstration of enrichment of less and more sialylated IgG3 in cryoprecipitated and noncryoprecipitated fractions, respectively, separated from four different cryogenic IgG3 mAb. Significantly, the sialic acid contents of the latter fraction became comparable to those of non-cryogenic IgG3 mAb. Finally, we observed that highly sialylated non-cryogenic IgG3 mAb was more potent in the inhibition of cryoprecipitation of cryogenic IgG3 mAb. Our results thus suggest that the content of negatively charged sialic acids in oligosaccharide side chains is one of the critical factors to determine IgG3 cryoglobulin activity, along with amino acid sequences of the IgG3 variable regions.  相似文献   
450.
Microarray analysis of brassinosteroid-regulated genes in Arabidopsis   总被引:14,自引:0,他引:14  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号