首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   18篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   36篇
  2012年   12篇
  2011年   11篇
  2010年   9篇
  2009年   13篇
  2008年   14篇
  2007年   15篇
  2006年   10篇
  2005年   6篇
  2004年   11篇
  2003年   9篇
  2002年   12篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   9篇
  1989年   7篇
  1988年   3篇
  1987年   11篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1979年   3篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1968年   5篇
  1967年   3篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
41.
The mechanisms that lead from obesity to atherosclerotic disease are not fully understood. Obesity involves angiogenesis in which vascular endothelial growth factor-A (VEGF-A) plays a key role. On the other hand, vascular endothelial growth factor-C (VEGF-C) plays a pivotal role in lymphangiogenesis. Circulating levels of VEGF-A and VEGF-C are elevated in sera from obese subjects. However, relationships of VEGF-C with atherosclerotic risk factors and atherosclerosis are unknown. We determined circulating levels of VEGF-A and VEGF-C in 423 consecutive subjects not receiving any drugs at the Health Evaluation Center. After adjusting for age and gender, VEGF-A levels were significantly and more strongly correlated with the body mass index (BMI) and waist circumference than VEGF-C. Conversely, VEGF-C levels were significantly and more closely correlated with metabolic (e.g., fasting plasma glucose, hemoglobin A1c, immunoreactive insulin, and the homeostasis model assessment of insulin resistance) and lipid parameters (e.g., triglycerides, total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and non-high-density-lipoprotein cholesterol (non-HDL-C)) than VEGF-A. Stepwise regression analyses revealed that independent determinants of VEGF-A were the BMI and age, whereas strong independent determinants of VEGF-C were age, triglycerides, and non-HDL-C. In apolipoprotein E-deficient mice fed a high-fat-diet (HFD) or normal chow (NC) for 16 weeks, levels of VEGF-A were not significantly different between the two groups. However, levels of VEGF-C were significantly higher in HFD mice with advanced atherosclerosis and marked hypercholesterolemia than NC mice. Furthermore, immunohistochemistry revealed that the expression of VEGF-C in atheromatous plaque of the aortic sinus was significantly intensified by feeding HFD compared to NC, while that of VEGF-A was not. In conclusion, these findings demonstrate that VEGF-C, rather than VEGF-A, is closely related to dyslipidemia and atherosclerosis.  相似文献   
42.
An arginine residue in loop 4 connecting beta strand 4 and alpha-helix 4 is conserved in glycoside hydrolase family 10 (GH10) xylanases. The arginine residues, Arg(204) in xylanase A from Bacillus halodurans C-125 (XynA) and Arg(196) in xylanase B from Clostridium stercorarium F9 (XynB), were replaced by glutamic acid, lysine, or glutamine residues (XynA R204E, K and Q, and XynB R196E, K and Q). The pH-k(cat)/K(m) and the pH-k(cat) relationships of these mutant enzymes were measured. The pK(e2) and pK(es2) values calculated from these curves were 8.59 and 8.29 (R204E), 8.59 and 8.10 (R204K), 8.61 and 8.19 (R204Q), 7.42 and 7.19 (R196E), 7.49 and 7.18 (R196K), and 7.86 and 7.38 (R196Q) respectively. Only the pK(es2) value of arginine derivatives was less than those of the wild types (8.49 and 9.39 [XynA] and 7.62 and 7.82 [XynB]). These results suggest that the conserved arginine residue in GH10 xylanases increases the pK(a) value of the proton donor Glu during substrate binding. The arginine residue is considered to clamp the proton donor and subsite +1 to prevent structural change during substrate binding.  相似文献   
43.
Exo-1,5-α-l-arabinofuranosidases belonging to glycoside hydrolase family 43 have strict substrate specificity. These enzymes hydrolyze only the α-1,5-linkages of linear arabinan and arabino-oligosaccharides in an exo-acting manner. The enzyme from Streptomyces avermitilis contains a core catalytic domain belonging to glycoside hydrolase family 43 and a C-terminal arabinan binding module belonging to carbohydrate binding module family 42. We determined the crystal structure of intact exo-1,5-α-l-arabinofuranosidase. The catalytic module is composed of a 5-bladed β-propeller topologically identical to the other family 43 enzymes. The arabinan binding module had three similar subdomains assembled against one another around a pseudo-3-fold axis, forming a β-trefoil-fold. A sugar complex structure with α-1,5-l-arabinofuranotriose revealed three subsites in the catalytic domain, and a sugar complex structure with α-l-arabinofuranosyl azide revealed three arabinose-binding sites in the carbohydrate binding module. A mutagenesis study revealed that substrate specificity was regulated by residues Asn-159, Tyr-192, and Leu-289 located at the aglycon side of the substrate-binding pocket. The exo-acting manner of the enzyme was attributed to the strict pocket structure of subsite −1, formed by the flexible loop region Tyr-281–Arg-294 and the side chain of Tyr-40, which occupied the positions corresponding to the catalytic glycon cleft of GH43 endo-acting enzymes.  相似文献   
44.
Although proteins may be artificially improved by random insertion and deletion mutagenesis methods, these procedures are technically difficult, and the mutations introduced are no more variable than those introduced by the introduction of random point mutations. We describe here a three-step method called RAISE, which is based on gene shuffling and can introduce a wide variety of insertions, deletions and substitutions. To test the efficacy of this method, we used it to mutate TEM β-lactamase to generate improved antibiotic resistance. Some unique insertion or deletion mutations were observed in the improved mutants, some of which caused higher activities than point mutations. Our findings indicate that the RAISE method can yield unique mutants and may be a powerful technique of protein engineering.  相似文献   
45.
Reducing end xylose-releasing exooligoxylanase (Rex, EC 3.2.1.156) is an inverting GH that hydrolyzes xylooligosaccharides (> or = X3) to release X1 at their reducing end. The wild-type enzyme exhibited the Hehre resynthesis hydrolysis mechanism, in which alpha-X2F was hydrolyzed to X2 and HF in the presence of X1 as an acceptor molecule. However, the transglycosidation product (X3) was not detectable in the reaction. To convert reducing end xylose-releasing exooligoxylanase to glycosynthase, derivatives with mutations in the catalytic base (Asp-263) were constructed by saturation random mutagenesis. Nine amino acid residue mutants (Asp-263 to Gly, Ala, Val, Thr, Leu, Asn, Cys, Pro, or Ser) were found to possess glycosynthase activity forming X3 from alpha-X2F and X1. Among them, D263C showed the highest level of X3 production, and D263N exhibited the fastest consumption of alpha-X2F. The D263C mutant showed 10-fold lower hydrolytic activity than D263N, resulting in the highest yield of X3. X2 was formed from the early stage of the reaction of the D263C mutant, indicating that a portion of the X3 formed by condensation was hydrolyzed before its release from the enzyme. To acquire glycosynthase activity from inverting enzymes, it is important to minimize the decrease in F(-)-releasing activity while maximizing the decrease in the hydrolytic activity. The present study expands the possibility of conversion of glycosynthases from inverting enzymes.  相似文献   
46.
Four derivatives of 2(II)-deoxycellobiose were synthesized from d-glucal and acceptor sugars (d-glucose, d-xylose, d-mannose, and 2-deoxy-d-arabino-hexose) using a cellobiose phosphorylase from Cellvibrio gilvus. The enzyme was found to be an effective catalyst to synthesize the beta-(1-->4) linkage of 2-deoxy-d-arabino-hexopyranoside. The acceptor specificity for the d-glucal reaction was identical to that for the alpha-d-glucose 1-phosphate reaction, but the activity of d-glucal was approximately 500 times less than that of alpha-d-glucose 1-phosphate, using 10mM substrates.  相似文献   
47.
A novel phosphorylase from Clostridium phytofermentans belonging to the glycoside hydrolase family (GH) 65 (Cphy1874) was characterized. The recombinant Cphy1874 protein produced in Escherichia coli showed phosphorolytic activity on nigerose in the presence of inorganic phosphate, resulting in the release of d-glucose and β-d-glucose 1-phosphate (β-G1P) with the inversion of the anomeric configuration. Kinetic parameters of the phosphorolytic activity on nigerose were k cat = 67 s−1 and K m = 1.7 mM. This enzyme did not phosphorolyze substrates for the typical GH65 enzymes such as trehalose, maltose, and trehalose 6-phosphate except for a weak phosphorolytic activity on kojibiose. It showed the highest reverse phosphorolytic activity in the reverse reaction using d-glucose as the acceptor and β-G1P as the donor, and the product was mostly nigerose at the early stage of the reaction. The enzyme also showed reverse phosphorolytic activity, in a decreasing order, on d-xylose, 1,5-anhydro-d-glucitol, d-galactose, and methyl-α-d-glucoside. All major products were α-1,3-glucosyl disaccharides, although the reaction with d-xylose and methyl-α-d-glucoside produced significant amounts of α-1,2-glucosides as by-products. We propose 3-α-d-glucosyl-d-glucose:phosphate β-d-glucosyltransferase as the systematic name and nigerose phosphorylase as the short name for this Cphy1874 protein.  相似文献   
48.
Bacterial laminaribiose phosphorylase (LBP(bac)) was first identified and purified from cell-free extract of Paenibacillus sp. YM-1. It phosphorolyzed laminaribiose into α-glucose 1-phosphate and glucose, but did not phosphorolyze other glucobioses. It slightly phosphorolyzed laminaritriose and higher laminarioligosaccharides. The specificity of the degree of polymerization of the substrate was clearly different from that of the enzyme of Euglena gracilis (LBP(Eug)): LBP(bac) was more specific to laminaribiose than LBP(Eug). It showed acceptor specificity in reverse phosphorolysis similar to LBP(Eug). Cloning of the gene encoding LBP(bac) (lbpA) has revealed that LBP(bac) is a member of the glucoside hydrolase family 94, which includes cellobiose phosphorylase, cellodextrin phosphorylase, and N,N'-diacetylchitobiose phosphorylase. The genes that encode the components of an ATP-binding cassette sugar transporter specific to laminarioligosaccharides were identified upstream of lbpA, suggesting that the role of LBP(bac) is to utilize laminaribiose generated outside the cell. This role is different from that of LBP(Eug), which participates in the utilization of paramylon, the intracellular storage 1,3-β-glucan.  相似文献   
49.
50.
Nell2 is a neuron-specific protein containing six epidermal growth factor-like domains. We have identified Nell2 as a retinal ganglion cell (RGC)-expressed gene by comparing mRNA profiles of control and RGC-deficient rat retinas. The aim of this study was to analyze Nell2 expression in wild-type and optic nerve axotomized retinas and evaluate its potential role in RGCs. Nell2-positive in situ and immunohistochemical signals were localized to irregularly shaped cells in the ganglion cell layer (GCL) and colocalized with retrogradely-labeled RGCs. No Nell2-positive cells were detected in 2 weeks optic nerve transected (ONT) retinas characterized with approximately 90% RGC loss. RT-PCR analysis showed a dramatic decrease in the Nell2 mRNA level after ONT compared to the controls. Immunoblot analysis of the Nell2 expression in the retina revealed the presence of two proteins with approximate MW of 140 and 90 kDa representing glycosylated and non-glycosylated Nell2, respectively. Both products were almost undetectable in retinal protein extracts two weeks after ONT. Proteome analysis of Nell2-interacting proteins carried out with MALDI-TOF MS (MS) identified microtubule-actin crosslinking factor 1 (Macf1), known to be critical in CNS development. Strong Macf1 expression was observed in the inner plexiform layer and GCL where it was colocalizied with Thy-1 staining. Since Nell2 has been reported to increase neuronal survival of the hippocampus and cerebral cortex, we evaluated the effect of Nell2 overexpression on RGC survival. RGCs in the nasal retina were consistently more efficiently transfected than in other areas (49% vs. 13%; n = 5, p<0.05). In non-transfected or pEGFP-transfected ONT retinas, the loss of RGCs was approximately 90% compared to the untreated control. In the nasal region, Nell2 transfection led to the preservation of approximately 58% more cells damaged by axotomy compared to non-transfected (n = 5, p<0.01) or pEGFP-transfected controls (n = 5, p<0.01).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号