首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   14篇
  144篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   9篇
  2015年   12篇
  2014年   10篇
  2013年   8篇
  2012年   9篇
  2011年   3篇
  2010年   7篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   8篇
  2004年   2篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1965年   1篇
  1934年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
71.

Background

The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure – the syncytium – which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium.

Results

The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure.

Conclusion

This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-923) contains supplementary material, which is available to authorized users.  相似文献   
72.
We have shown that first-pass intestinal metabolism is necessary for approximately 50% of whole body arginine synthesis from its major precursor proline in neonatal piglets. Furthermore, the intestine is not the site of increased arginine synthesis observed during dietary arginine deficiency. Primed constant intravenous (iv) and intraportal (ip) infusions of L-[U-14C]proline, and iv infusion of either L-[guanido-14C]arginine or L-[4,5-3H]arginine were used to measure first-pass hepatic arginine synthesis in piglets enterally fed either deficient (0.20 g.kg(-1).day(-1)) or generous (1.80 g.kg(-1).day(-1)) quantities of arginine for 5 days. Conversion of arginine to other urea cycle intermediates and arginine recycling were also calculated for both dietary treatments. Arginine synthesis (g.kg(-1).day(-1)) from proline was greater in piglets (P < 0.05) fed the deficient arginine diet in both the presence (generous: 0.07; deficient: 0.17; pooled SE = 0.01) and absence (generous: 0.06; deficient: 0.20; pooled SE = 0.01) of first-pass hepatic metabolism. There was no net arginine synthesis from proline during first-pass hepatic metabolism regardless of arginine intake. Arginine conversion to urea, citrulline, and ornithine was significantly greater (P < 0.05) in piglets fed the generous arginine diet. Calculated arginine fluxes were significantly lower (P = 0.01) for [4,5-3H]arginine than for [guanido-14C]arginine, and the discrepancy between the values was greater in piglets fed the deficient arginine diet (35% vs. 20%). Collectively, these findings show that first-pass hepatic metabolism is not a site of net arginine synthesis and that piglets conserve dietary arginine in times of deficiency by decreasing hydrolysis and increasing recycling.  相似文献   
73.
74.
75.

Background

High-throughput genotype (HTG) data has been used primarily in genome-wide association (GWA) studies; however, GWA results explain only a limited part of the complete genetic variation of traits. In systems genetics, network approaches have been shown to be able to identify pathways and their underlying causal genes to unravel the biological and genetic background of complex diseases and traits, e.g., the Weighted Gene Co-expression Network Analysis (WGCNA) method based on microarray gene expression data. The main objective of this study was to develop a scale-free weighted genetic interaction network method using whole genome HTG data in order to detect biologically relevant pathways and potential genetic biomarkers for complex diseases and traits.

Results

We developed the Weighted Interaction SNP Hub (WISH) network method that uses HTG data to detect genome-wide interactions between single nucleotide polymorphism (SNPs) and its relationship with complex traits. Data dimensionality reduction was achieved by selecting SNPs based on its: 1) degree of genome-wide significance and 2) degree of genetic variation in a population. Network construction was based on pairwise Pearson's correlation between SNP genotypes or the epistatic interaction effect between SNP pairs. To identify modules the Topological Overlap Measure (TOM) was calculated, reflecting the degree of overlap in shared neighbours between SNP pairs. Modules, clusters of highly interconnected SNPs, were defined using a tree-cutting algorithm on the SNP dendrogram created from the dissimilarity TOM (1-TOM). Modules were selected for functional annotation based on their association with the trait of interest, defined by the Genome-wide Module Association Test (GMAT). We successfully tested the established WISH network method using simulated and real SNP interaction data and GWA study results for carcass weight in a pig resource population; this resulted in detecting modules and key functional and biological pathways related to carcass weight.

Conclusions

We developed the WISH network method which is a novel 'systems genetics' approach to study genetic networks underlying complex trait variation. The WISH network method reduces data dimensionality and statistical complexity in associating genotypes with phenotypes in GWA studies and enables researchers to identify biologically relevant pathways and potential genetic biomarkers for any complex trait of interest.
  相似文献   
76.
Arterial branching in man and monkey   总被引:3,自引:1,他引:3       下载免费PDF全文
Vessel diameters and branching angles are measured from a large number of arterial bifurcations in the retina of a normal human subject and in that of a rhesus monkey. The results are compared with each other and with theoretical results on this subject.  相似文献   
77.
To determine the specificity and efficacy of [(3)H]ouabain binding as a quantitative measure of the Na(+) pump (Na(+), K(+)-ATPase) and as a marker for the localization of pumps involved in transepithelial Na(+)-transport, we analyzed the interaction of [(3)H]ouabain with its receptor in pig kidney epithelial (LLC-PK(1)) cells. When these epithelial cells are depleted of Na(+) and exposed to 2 muM [(3)H]ouabain in a Na(+)-free medium, binding is reduced by 90 percent. When depleted of K(+) and incubated in a K(+)- free medium, the ouabain binding rate is increase compared with that measured at 5 mM. This increase is only demonstable when Na(+) is present. The increased rate could be attributed to the predominance of the Na(+)-stimulated phosphorylated form of the pump, as K(+) is not readily available to stimulate dephosphorylation. However, some binding in the K(+)-free medium is attributable to pump turnover (and therefore, recycling of K(+)), because analysis of K(+)-washout kinetics demonstrated that addition of 2 muM ouabain to K(+)-depleted cells increased the rate of K(+) loss. These results indicate that in intact epithelial cells, unlike isolated membrane preparations, the most favorable condition for supporting ouabain binding occurs when the Na(+), K(+)-ATPase is operating in the Na(+)-pump mode or is phosphorylated in the presence of Na(+). When LLC-PK(1) cells were exposed to ouabain at 4 degrees C, binding was reduced by 97 percent. Upon rewarming, the rate of binding was greater than that obtained on cells kept at a constant 37 degrees C. However, even at this accelerated rate, the time to reach equilibrium was beyond what is required for cells, swollen by exposure to cold, to recover normal volume. Thus, results from studies that have attempted to use ouabain to eliminate the contribution of the conventional Na(+) pump to volume recovery must be reevaluated if the exposure to ouabain was done in the cold or under conditions in which the Na(+) pump is not operating.  相似文献   
78.

Background

Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed.

Results

Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated.

Conclusion

The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1448-x) contains supplementary material, which is available to authorized users.  相似文献   
79.
Composite antibody mixtures designed to combat diseases present a new, rapidly emerging technology in the field of biopharmaceuticals. The combination of multiple antibodies can lead to increased effector response and limit the effect of escape variants that can propagate the disease. However, parallel development of analytical technologies is required to provide fast, thorough, accurate, and robust characterization of these mixtures. Here, we evaluate the utility of native mass spectrometry on an Orbitrap platform with high mass resolving power to characterize composite mixtures of up to 15 separate antibodies. With this technique, unambiguous identification of each antibody in the mixtures was achieved. Mass measurements of the intact antibodies varied 7 ppm on average, allowing highly reproducible identification and quantitation of each compound in these complex mixtures. We show that with the high mass-resolving power and robustness of this technology, high-resolution native mass spectrometry can be used efficiently even for batch-to-batch characterization.  相似文献   
80.
Bacterial species and evolution: Theoretical and practical perspectives   总被引:2,自引:0,他引:2  
A discussion of the species problem in modern evolutionary biology serves as the point of departure for an exploration of how the basic science aspects of this problem relate to efforts to map bacterial diversity for practical pursuits—for prospecting among the bacteria for useful genes and gene-products. Out of a confusing array of species concepts, the Cohesion Species Concept seems the most appropriate and useful for analyzing bacterial diversity. Techniques of allozyme analysis and DNA fingerprinting can be used to put this concept into practice to map bacterial genetic diversity, though the concept requires minor modification to encompass cases of complete asexuality. Examples from studies of phenetically definedBacillus species provide very partial maps of genetic population structure. A major conclusion is that such maps frequently reveal deep genetic subdivision within the phenetically defined specles; divisions that in some cases are clearly distinct genetic species. Knowledge of such subdivisions is bound to make prospecting within bacterial diversity more effective. Under the general concept of genetic cohesion a hypothetical framework for thinking about the full range of species conditions that might exist among bacteria is developed and the consequences of each such model for species delineation, and species identification are discussed. Modes of bacterial evolution, and a theory of bacterial speciation with and without genetic recombination, are examined. The essay concludes with thoughts about prospects for very extensive mapping of bacterial diversity in the service of future efforts to find useful products. In this context, evolutionary biology becomes the handmaiden of important industrial activities. A few examples of past success in commercializing bacterial gene-products from species ofBacillus and a few other bacteria are reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号