首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1520篇
  免费   107篇
  1627篇
  2022年   9篇
  2021年   16篇
  2020年   10篇
  2018年   17篇
  2017年   12篇
  2016年   15篇
  2015年   32篇
  2014年   40篇
  2013年   125篇
  2012年   63篇
  2011年   57篇
  2010年   43篇
  2009年   40篇
  2008年   65篇
  2007年   74篇
  2006年   70篇
  2005年   67篇
  2004年   68篇
  2003年   74篇
  2002年   49篇
  2001年   62篇
  2000年   50篇
  1999年   48篇
  1998年   21篇
  1997年   23篇
  1996年   15篇
  1995年   5篇
  1994年   17篇
  1993年   13篇
  1992年   35篇
  1991年   49篇
  1990年   33篇
  1989年   28篇
  1988年   36篇
  1987年   25篇
  1986年   26篇
  1985年   33篇
  1984年   15篇
  1983年   15篇
  1982年   13篇
  1981年   10篇
  1980年   13篇
  1979年   8篇
  1978年   8篇
  1977年   15篇
  1975年   16篇
  1974年   7篇
  1973年   15篇
  1972年   6篇
  1971年   6篇
排序方式: 共有1627条查询结果,搜索用时 15 毫秒
51.
Inhibition of cholesterol absorption and synthesis in rats by sesamin   总被引:21,自引:0,他引:21  
The effects of sesamin, a lignan from sesame oil, on various aspects of cholesterol metabolism were examined in rats maintained on various dietary regimens. When given at a dietary level of 0.5% for 4 weeks, sesamin reduced the concentration of serum and liver cholesterol significantly irrespective of the presence or absence of cholesterol in the diet, except for one experiment in which the purified diet free of cholesterol was given. On feeding sesamin, there was a decrease in lymphatic absorption of cholesterol accompanying an increase in fecal excretion of neutral, but not acidic, steroids, particularly when the cholesterol-enriched diet was given. Sesamin inhibited micellar solubility of cholesterol, but not bile acids, whereas it neither bound taurocholate nor affected the absorption of fatty acids. Only a marginal proportion (ca. 0.15%) of sesamin administered intragastrically was recovered in the lymph. There was a significant reduction in the activity of liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase after feeding sesamin, although the activity of hepatic cholesterol 7 alpha-hydroxylase, drug metabolizing enzymes, and alcohol dehydrogenase remained uninfluenced. Although the weight and phospholipid concentration of the liver increased unequivocally on feeding sesamin, the histological examination by microscopy showed no abnormality, and the activity of serum GOT and GPT remained unchanged. Since sesamin lowered both serum and liver cholesterol levels by inhibiting absorption and synthesis of cholesterol simultaneously, it deserves further study as a possible hypocholesterolemic agent of natural origin.  相似文献   
52.
Ovalbumin, which contains one intrachain disulfide bond and four cysteine sulfhydryls, was reduced with dithiothreitol under non-denaturing conditions, and its conformation and stability were compared with those of the disulfide-bonded form. The CD spectrum in the far-UV region revealed that the overall conformation of the reduced form is similar to that of the disulfide-bonded one. Likewise, the inaccessibility to trypsin and the non-reactivity of the four cysteine sulfhydryls, exhibited by the native disulfide-bonded ovalbumin, were still retained in the disulfide-reduced form. Thus, the reduced ovalbumin appeared to substantially take the native-like conformation. However, the near-UV CD spectrum slightly differed between the native and disulfide-reduced forms. Protein alkylation with a fluorescent dye and subsequent sequence analysis showed that the two sulfhydryls (Cys73 and Cys120) originating from the disulfide bond are highly reactive in the reduced form. Furthermore, upon proteolysis with subtilisin, the N-terminal side of Cys73 was cleaved in the reduced form, but not in the disulfide-bonded one. Upon heat denaturation, the transition temperature of the reduced form was lower, by 6.8 degrees C, than that of the disulfide-bonded one. Thus, we concluded that ovalbumin has a native-like conformation in its disulfide-reduced form, but that the local conformation of the reduced form fluctuates more than that of the disulfide-bonded one. Such local destabilization may be related to the decreased stability against heat denaturation.  相似文献   
53.
Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.  相似文献   
54.
The conformation of the fully disulfide-reduced state of human serum albumin was investigated by tryptophan fluorescence spectrum, CD analyses, and size-exclusion chromatography. Both the reduction of the native disulfide-bonded form under nondenaturing conditions and the refolding of the urea-denatured disulfide-reduced form under reduced conditions yielded almost exactly the same disulfide-reduced state with partially folded unique conformation that was clearly distinguished from either the native or fully denatured state. In addition, the interconversion between the urea-denatured reduced form and the partially folded reduced form was reversible with each other; by reoxidation, the partially folded reduced form was converted to the disulfide-bonded form. The conformation of disulfide-reduced serum albumin was highly variable depending on pH and ionic strength conditions. Thus, we concluded that the disulfide-reduced state with partially folded variable conformation is involved in the reversible interconversion between the denatured reduced form and the native disulfide-bonded form of human serum albumin.  相似文献   
55.
In Escherichia coli cells carrying wild-type ovalbumin cDNA, some of the recombinant protein was secreted into the periplasmic space. In contrast, a signal-region mutant form of ovalbumin (deletion, Gly1 to Ala39) was not detected in the periplasm despite being synthesized at the same level as the wild-type protein. Chemical and spectroscopic analyses showed that periplasmic ovalbumin assumes a conformation indistinguishable from that of native egg white ovalbumin. We concluded that a process resembling the secretion of ovalbumin process in the oviduct occurs also in bacteria.  相似文献   
56.
Abstract: We describe here two types of apoptotic cell death observed in the rat CNS-derived neuroblastoma B50 and B104 cells. One type was induced by dibutyryl cyclic AMP (DBcAMP) after differentiation, and the other was induced by treatment of proliferating cells with cycloheximide. When B50 and B104 cells were treated with 1 m M DBcAMP in the presence of 0.5% fetal calf serum, they began to extend neurites within 12 h and differentiated into neurons at 24 h, as reported previously. However, further cultivation with DBcAMP for up to 72 h led to flotation and, finally, death. Death was by apoptosis as shown by chromatin condensation and DNA fragmentation. Addition of a protein kinase A inhibitor or removal of DBcAMP after differentiation suppressed apoptosis, indicating the involvement of cyclic AMP and protein kinase A in apoptotic cell death. Cell death was also induced in proliferating cells without neurite outgrowth by treatment with cycloheximide. The death was also judged to be by apoptosis based on chromatin condensation and apoptotic body formation, although DNA fragmentation into small sizes was not detected. Both types of cell death showed similar responses to inhibitors for protein kinases and protein phosphatases.  相似文献   
57.
We previously demonstrated that hDREF, a human homologue of Drosophila DNA replication-related element binding factor (dDREF), is a DNA-binding protein predominantly distributed with granular structures in the nucleus. Here, glutathione S-transferase pulldown and chemical cross-linking assays showed that the carboxyl-terminal hATC domain of hDREF, highly conserved among hAT transposase family members, possesses self-association activity. Immunoprecipitation analyses demonstrated that hDREF self-associates in vivo, dependent on hATC domain. Moreover, analyses using a series of hDREF mutants carrying amino acid substitutions in the hATC domain revealed that conserved hydrophobic amino acids are essential for self-association. Immunofluorescence studies further showed that all hDREF mutants lacking self-association activity failed to accumulate in the nucleus. Self-association-defective hDREF mutants also lost association with endogenous importin beta1. Moreover, electrophoretic gel-mobility shift assays revealed that the mutations completely abolished the DNA binding activity of hDREF. These results suggest that self-association of hDREF via the hATC domain is necessary for its nuclear accumulation and DNA binding. We also found that ZBED4/KIAA0637, another member of the human hAT family, also self-associates, again dependent on the hATC domain, with deletion resulting in loss of efficient nuclear accumulation. Thus, hATC domains of human hAT family members appear to have conserved functions in self-association that are required for nuclear accumulation.  相似文献   
58.
A critical role for the small GTPase Rho and one of its targets, p160ROCK (a Rho-associated coiled coil-forming protein kinase), in neurite remodeling was examined in neuroblastoma N1E-115 cells. Using wild-type and a dominant-negative form of p160ROCK and a p160ROCK-specific inhibitor, Y-27632, we show here that p160ROCK activation is necessary and sufficient for the agonist-induced neurite retraction and cell rounding. The neurite retraction was accompanied by elevated phosphorylation of myosin light chain and the disassembly of the intermediate filaments and microtubules. Y-27632 blocked both neurite retraction and the elevation of myosin light chain phosphorylation in a similar concentration-dependent manner. On the other hand, suppression of p160ROCK activity by expression of a dominant-negative form of p160ROCK induced neurites in the presence of serum by inducing the reassembly of the intermediate filaments and microtubules. The neurite outgrowth by the p160ROCK inhibition was blocked by coexpression of dominant-negative forms of Cdc42 and Rac, indicating that p160ROCK constitutively and negatively regulates neurite formation at least in part by inhibiting activation of Cdc42 and Rac. The assembly of microtubules and intermediate filaments to form extended processes by inhibitors of the Rho–ROCK pathway was also observed in Swiss 3T3 cells. These results indicate that Rho/ROCK-dependent tonic inhibition of cell process extension is exerted via activation of the actomysin-based contractility, in conjunction with a suppression of assembly of intermediate filaments and microtubules in many cell types including, but not exclusive to, neuronal cells.  相似文献   
59.
60.
Previously, we identified a new mammalian sHSP, MKBP, as a myotonic dystrophy protein kinase-binding protein, and suggested its important role in muscle maintenance (Suzuki, A., Sugiyama, Y., Hayashi, Y., Nyu-i, N., Yoshida, M., Nonaka, I., Ishiura, S., Arahata, K., and Ohno, S. (1998) J. Cell Biol. 140, 1113-1124). In this paper, we develop the former work by performing extensive characterization of five of the six sHSPs so far identified, that is, HSP27, alphaB-crystallin, p20, MKBP/HSPB2, and HSPB3, omitting lens-specific alphaA-crystallin. Tissue distribution analysis revealed that although each sHSP shows differential constitutive expression in restricted tissues, tissues that express all five sHSPs are only muscle-related tissues. Especially, the expressions of HSPB3, identified for the first time as a 17-kDa protein in this paper, and MKBP/HSPB2 are distinctly specific to muscles. Moreover, these sHSPs form an oligomeric complex with an apparent molecular mass of 150 kDa that is completely independent of the oligomers formed by HSP27, alphaB-crystallin, and p20. The expressions of MKBP/HSPB2 and HSPB3 are induced during muscle differentiation under the control of MyoD, suggesting that the sHSP oligomer comprising MKBP/HSPB2 and HSPB3 represents an additional system closely related to muscle function. The functional divergence among sHSPs in different oligomers is also demonstrated in several ways: 1) an interaction with myotonic dystrophy protein kinase, which has been suggested to be important for the maintenance of myofibril integrity, was observed only for MKBP/HSPB2; 2) a myotube-specific association with actin bundles was observed for HSP27 and alphaB-crystallin, but not for MKBP/HSPB2; and 3) sHSPs whose mRNAs are induced by heat shock are alphaB-crystallin and HSP27. Taken together, the results suggest that muscle cells develop two kinds of stress response systems composed of diverged sHSP members, and that these systems work independently in muscle maintenance and differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号