全文获取类型
收费全文 | 33944篇 |
免费 | 3052篇 |
国内免费 | 2477篇 |
专业分类
39473篇 |
出版年
2024年 | 89篇 |
2023年 | 418篇 |
2022年 | 813篇 |
2021年 | 1326篇 |
2020年 | 963篇 |
2019年 | 1181篇 |
2018年 | 1158篇 |
2017年 | 797篇 |
2016年 | 1193篇 |
2015年 | 2021篇 |
2014年 | 2247篇 |
2013年 | 2492篇 |
2012年 | 3039篇 |
2011年 | 2831篇 |
2010年 | 1693篇 |
2009年 | 1505篇 |
2008年 | 1832篇 |
2007年 | 1645篇 |
2006年 | 1505篇 |
2005年 | 1238篇 |
2004年 | 1155篇 |
2003年 | 985篇 |
2002年 | 893篇 |
2001年 | 719篇 |
2000年 | 657篇 |
1999年 | 586篇 |
1998年 | 326篇 |
1997年 | 314篇 |
1996年 | 297篇 |
1995年 | 248篇 |
1994年 | 265篇 |
1993年 | 180篇 |
1992年 | 320篇 |
1991年 | 295篇 |
1990年 | 246篇 |
1989年 | 229篇 |
1988年 | 192篇 |
1987年 | 156篇 |
1986年 | 146篇 |
1985年 | 151篇 |
1984年 | 142篇 |
1983年 | 103篇 |
1982年 | 90篇 |
1980年 | 59篇 |
1979年 | 75篇 |
1978年 | 69篇 |
1977年 | 58篇 |
1976年 | 67篇 |
1975年 | 63篇 |
1974年 | 75篇 |
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
191.
192.
Lihua Kang Guowei Zhang Yaohua Yan Kaifu Ke Xinmin Wu Yilu Gao Jing Li Lin Zhu Qiyun Wu Zhengming Zhou 《Neurochemical research》2013,38(2):311-320
Heat shock protein A12B (HSPA12B) is the newest member of a recently defined subfamily of proteins distantly related to the 70-kDa family of heat shock proteins (HSP70) family. HSP70s play a crucial role in protecting cells, tissues, organs and animals from various noxious conditions. Here we studied the dynamic expression changes and localization of HSPA12B after middle cerebral artery occlusion (MCAO) with reperfusion induced ischemic insult processes in adult rats. Apoptosis, as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, was also increased in the peri-ischemic cortex compared to non-ischemic hemisphere. The expression of HSPA12B was strongly induced in the ischemic hemisphere of MCAO reperfusion rats in vivo. In vitro studies indicated that the up-regulation of HSPA12B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knockdown of HSPA12B in cultured differentiated PC12 cells by siRNA showed that HSPA12B inhibited the expression of active caspase-3. Collectively, these results suggested that HSPA12B may be required for protecting neurons from ischemic insults. 相似文献
193.
194.
不同群落类型柔毛淫羊藿总黄酮和淫羊藿苷含量及其与土壤因子的关系 总被引:3,自引:0,他引:3
2009年8月,采用高效液相色谱法和紫外分光光度法测定了唐家河自然保护区次生落叶阔叶林红桦群落(群落Ⅰ)、常绿落叶阔叶混交林细叶青冈群落(群落Ⅱ)和常绿阔叶林油樟群落(群落Ⅲ)下生长的柔毛淫羊藿各器官的总黄酮和淫羊藿苷含量,分析其与土壤因子的关系结果表明:柔毛淫羊藿叶片中总黄酮和淫羊藿苷含量最高、茎中最低;群落Ⅰ的柔毛淫羊藿总黄酮和淫羊藿苷含量[(5.32±0.23)%和(0.47±0.05)%]均显著高于群落Ⅱ[(4.06±0.03)%和(0.32±0.01)%]和群落Ⅲ[(4.15±0.07)%和(0.28±0.09)%];土壤氮含量和pH值对柔毛淫羊藿的总黄酮和淫羊藿苷含量影响较大,柔毛淫羊藿总黄酮和淫羊藿苷含量与土壤全氮和碱解氮呈显著负相关(P<0.05),与土壤pH值呈极显著正相关(P<0.01).土壤较低的氮供应水平和较高的土壤酸度可能使群落Ⅰ柔毛淫羊藿的总黄酮和淫羊藿苷含量增加. 相似文献
195.
Tsui-Ling Chang Shu-Wei Lin Shuo-lun Wu Chu-Mei Hong 《The Journal of nutritional biochemistry》2013,24(11):1970-1981
Little attention has been devoted to studying the roles of natural antioxidants in the ubiquitin-proteasome pathway during oxidative stress. We demonstrated that a time course revealed that the reassociation of the 19S regulators with the 20S proteasomes occurred automatically and rapidly to reconstitute the 26S proteasomes, with up to 80% completion, within 5 min after H2O2 treatment. Ubiquitin, methyl gallate and tannic acid are able to prevent H2O2 from inhibiting the 26S activity. We further show that the level of the ubiquitin, S5a and 20S core subunits decreased within 30 min and increased after 24 h of H2O2 treatment in Hep-2 cells. Phenolic compounds not only inhibited the 26S activity but also decreased the USP47 levels, which reduce the DNA damage repair rate during oxidative stress; in addition, the presence of DNA fragments, procaspase-3 and a decreased poly (ADP-ribose) polymerase also appeared as a result of the above conditions. Ubiquitin could serve as a protective substrate in H2O2 and phenolic compound-treated Hep-2 cells. Methyl gallate and tannic acid, as prooxidants, can attenuate the apoptotic response resulting from long-term oxidative stress. Collectively, these data demonstrate an important role for phenolic compounds in regulating the 26S proteasome and ubiquitin during oxidative stress. 相似文献
196.
The use of synthetic genes for the expression of ciliate proteins in heterologous systems 总被引:4,自引:0,他引:4
The common fish parasite, Ichthyophthirius multifiliis, expresses abundant glycosylated phosphatidylinositol (GPI)-anchored membrane proteins known as immobilization antigens, or i-antigens. These proteins are targets of the host immune response, and have been identified as potential candidates for recombinant subunit vaccine development. Nevertheless, because Ichthyophthirius utilizes a non-standard genetic code, expression of the corresponding gene products, either as subunit antigens in conventional protein expression systems, or as vector-encoded antigens in the case of DNA vaccines, is far from straightforward. To overcome this problem, we utilized 'assembly polymerase chain reaction' to manufacture synthetic versions of two genes (designated IAG52A[G5/CC] and IAG52B[G5/CC]) encoding approximately 52/55 kDa i-antigens from parasite strain G5. This approach made it possible to eliminate unwanted stop codons and substitute the preferred codon usage of channel catfish for the native sequences of the genes. To determine whether the synthetic alleles could be expressed in cells that use the standard genetic code, we introduced IAG52A[G5/CC] into a variety of heterologous cell types and tested for expression either by immunofluorescence light microscopy or Western blotting. When cloned downstream of appropriate promoters, IAG52A[G5/CC] was expressed in Escherichia coli, mammalian COS-7 cells, and channel catfish where it elicited antigen-specific immune responses. Interestingly, the localization pattern of the corresponding gene product in COS-7 cells indicated that while the protein was correctly folded, it was not present on the cell membrane, suggesting that the signal peptides required for GPI-anchor addition differ in ciliate and mammalian systems. Construction of synthetic alleles should have practical utility in the development of vaccines against Ichthyophthirius, and at the same time, provide a general method for the expression of ciliate genes in heterologous systems. 相似文献
197.
Jun Liu Tao Lin Douglas J. Botkin Erin McCrum Hanspeter Winkler Steven J. Norris 《Journal of bacteriology》2009,191(16):5026-5036
The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of ∼1,280 flagellar motors, a ∼3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.Flagellum-based motility plays a critical role in the biology and pathogenesis of many bacteria (3, 6, 17, 31). The well-conserved flagellum is commonly divided into three physical parts: the flagellar motor, the helically shaped flagellar filament, and the hook which provides a universal joint between the motor and the filament. In most bacteria, counterclockwise rotation of the flagella results in bundling of the helical flagella and propulsion of the cell through liquid or viscous environments. Clockwise rotation of the flagellar motor results in random turning of the cell with little translational motion (“tumbling”). Bacterial motility is thus a zigzag pattern of runs and tumbles, in which chemotactic signals favor running toward attractants and away from repellents (3).Borrelia burgdorferi and other closely related spirochetes are the causative agents of Lyme disease, which is transmitted to humans via infected Ixodes ticks (40). Spirochetes have a distinctive morphology in that the flagella are enclosed within the outer membrane sheath and are thus called periplasmic flagella (6). The flagellar motors are located at both ends of the cell and are coordinated to rotate in opposite directions during translational motion and in the same direction (i.e., both clockwise or both counterclockwise) during the spirochete equivalent of tumbling, called “flexing” (6, 15). Spirochetes are also capable of reversing translational motion by coordinated reversal of the direction of motor rotation at both ends of the cell. Rotation of the flagella causes a serpentine movement of the entire cell body, allowing B. burgdorferi to efficiently bore its way through tissue and disseminate throughout the mammalian host, resulting in manifestations in the joints, nervous system, and heart (40).The flagellar motor is an extraordinary nanomachine powered by the electrochemical potential of specific ions across the cytoplasmic membrane (3). Current knowledge of the flagellar motor structure and rotational mechanisms is based primarily on studies of Escherichia coli and Salmonella enterica and is summarized in several recent comprehensive reviews (3, 22, 31, 39, 42). The flagellar motor is constructed from at least 20 different kinds of proteins. The approximate location of these flagellar proteins has been determined by a variety of approaches and appears to be relatively consistent in a wide variety of bacteria. It can be divided into several morphological domains: the MS ring (FliF, the base for the flagellar motor); the C ring (FliG, FliM, and FliN, the switch complex regulating motor rotation); the export apparatus (multiple-protein complex located at the cytoplasmic side of the MS ring); the rod (connecting the MS ring and the hook); the L and P rings on the rod (thought to serve as bushings at the outer membrane and at the peptidoglycan layer, respectively); and the stator, which is the motor force generator embedded in the cytoplasmic membrane. Electron microscopy studies of the purified flagellar motor have provided a detailed view of the rotor/C-ring assembly (11, 44). However, there is no structural information on the stator and the export apparatus in these reconstructions, because these membrane-associated structures are not retained following detergent extraction during the extensive basal body purification process. The stator and the export apparatus were visualized by using freeze fracture preparations of cytoplasmic membranes. It appears that 10 to 16 stator units form circular arrays in the membrane (9, 20). Part of the export apparatus is located in the central space of the C ring (18). Recently a 7-nm-resolution structure of the intact flagellar motor in situ was revealed by averaging 20 structures obtained using cryo-electron tomography (cryo-ET) of Treponema primitia cells (32). Further analysis of the intact flagellar motor structure would lead to a better understanding of the motor protein distribution, the rotor-stator interaction, and the mechanism of bacterial motility.Cryo-ET has emerged as a three-dimensional (3-D) imaging technique to bridge the information gap between X-ray crystallographic and optical microscopic methods (24, 30). This process involves rapidly freezing viable cells, collecting a series of electron micrographs at different angles, and computationally combining the resulting images into a 3-D density map. Cryo-ET allows investigation of the structure-function relationship of molecular complexes and supramolecular assemblies in their cellular environments without fixation, dehydration, embedding, or sectioning artifacts. Spirochetes are well suited for cryo-ET analysis because of their narrow cell diameter (typically 0.2 to 0.3 μm). Recently the cellular architecture of Treponema primitia, Treponema denticola, and B. burgdorferi, as well as the configuration of the B. burgdorferi periplasmic flagella, were revealed by cryo-ET (7, 16, 26, 33). In combination with advanced computational methods, cryo-ET is currently the most promising approach for determining the cellular architecture in situ at molecular resolution (30). We have developed novel strategies for capturing and averaging thousands of 3-D images of large macromolecular assemblies to obtain ∼2.0-nm-resolution structures (28, 29).In this study, we present the molecular structures of infectious wild-type (WT) and mutant B. burgdorferi organisms and their flagellar motors in situ using high-throughput cryo-ET and 3-D image analysis. By averaging subvolumes of 1,280 flagellar motors from 322 cells, we obtained a ∼3.5-nm-resolution model of the intact flagellar motor, providing a detailed view of rotor-stator interactions. In addition, detergent treatment of intact cells provided a preliminary identification of the rotor and stator structures. Through the comparison of WT and mutant cells, we have also determined the location of the flgI gene product in the B. burgdorferi flagellar motor. 相似文献
198.
Thrombopoietin (TPO) plays a pivotal role in megakaryopoiesis. TPO initiates its biological effects by binding to its receptor Mpl. A recombinant protein consisting of a carrier Fc domain linked to multiple Mpl-binding domains was constructed, and is called AMG531. To define the biological activity of AMG531, we examined the ability of AMG531 to support CFU-Meg growth and to promote megakaryocyte maturation in vitro. AMG531 stimulates CFU-Meg growth in a dose-dependent manner, and acts in concert with erythropoietin, stem cell factor, interleukin-3, and interleukin-6 to enhance CFU-Meg growth, similar to parallel experiments with TPO. AMG531-stimulated serum-free liquid cultures support the development of mature polyploid megakaryocytes with a predominant DNA content of 32 N and 64 N, identical to that of parallel TPO-stimulated cultures. Competitive binding experiments show that AMG531 effectively competes with 125I-TPO for binding to BaF3-Mpl cells or normal platelets. Treatment of BaF3-Mpl cells with AMG531 or with TPO resulted in rapid tyrosine phosphorylation of Mpl, JAK2, and STAT5. These results indicate that AMG531 is a potent stimulant of megakarypoiesis in vitro, and provide support for its further characterization in vivo. 相似文献
199.
Li Xiaoyu Liang Qiao-Xia Lin Jin-Ran Peng Jinying Yang Jian-Hua Yi Chengqi Yu Yang Zhang Qiangfeng Cliff Zhou Ke-Ren 《中国科学:生命科学英文版》2020,63(4):501-515
RNA can interact with RNA-binding proteins(RBPs), mRNA, or other non-coding RNAs(ncRNAs) to form complex regulatory networks. High-throughput CLIP-seq, degradome-seq, and RNA-RNA interactome sequencing methods represent powerful approaches to identify biologically relevant ncRNA-target and protein-ncRNA interactions. However, assigning ncRNAs to their regulatory target genes or interacting RNA-binding proteins(RBPs) remains technically challenging. Chemical modifications to mRNA also play important roles in regulating gene expression. Investigation of the functional roles of these modifications relies highly on the detection methods used. RNA structure is also critical at nearly every step of the RNA life cycle. In this review, we summarize recent advances and limitations in CLIP technologies and discuss the computational challenges of and bioinformatics tools used for decoding the functions and regulatory networks of ncRNAs. We also summarize methods used to detect RNA modifications and to probe RNA structure. 相似文献
200.
Chen CP Lin SP Chern SR Lee CC Huang JK Wang W 《Genetic counseling (Geneva, Switzerland)》2006,17(2):185-189
A 34-year-old mother presented moderate mental retardation, short stature, microcephaly, and characteristic facial dysmorphism. Her 12-year-old daughter manifested moderate mental retardation, short stature, microcephaly, dysplastic external ear canals, hearing impairment, and characteristic facial dysmorphism. Cytogenetic analysis of the family revealed a normal karyotype, 46,XY, in the father, and a 46,XX,del(18)(q22.2) karyotype in both mother and daughter. Molecular marker analysis determined direct transmission of the distal 18q deletion from mother to daughter. The present case provides evidence of fertility of the affected females and a mother-to-daughter direct transmission in the familial 18q- syndrome. Identification of affected females with the 18q- syndrome should include genetic counseling of possible direct transmission and consideration of birth control or prenatal genetic testing at reproductive age. 相似文献