首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   65篇
  国内免费   24篇
  2023年   2篇
  2022年   8篇
  2021年   8篇
  2020年   7篇
  2019年   11篇
  2018年   17篇
  2017年   13篇
  2016年   25篇
  2015年   33篇
  2014年   27篇
  2013年   26篇
  2012年   37篇
  2011年   48篇
  2010年   25篇
  2009年   20篇
  2008年   12篇
  2007年   25篇
  2006年   22篇
  2005年   20篇
  2004年   27篇
  2003年   21篇
  2002年   40篇
  2001年   25篇
  2000年   21篇
  1999年   22篇
  1998年   19篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   9篇
  1993年   1篇
  1992年   8篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有613条查询结果,搜索用时 62 毫秒
31.
32.
33.
The known activity of cytochrome P450 46A1 (P450 46A1) is 24(S)-hydroxylation of cholesterol. This reaction produces biologically active oxysterol, 24(S)-hydroxycholesterol, and is also the first step in enzymatic degradation of cholesterol in the brain. We report here that P450 46A1 can further metabolize 24(S)-hydroxycholesterol, giving 24,25- and 24,27-dihydroxycholesterols in both the cell cultures transfected with P450 46A1 cDNA and the in vitro reconstituted system with recombinant enzyme. In addition, P450 46A1 was able to carry out side chain hydroxylations of two endogenous C27-steroids with and without a double bond between C5-C6 (7alpha-hydroxycholesterol and cholestanol, respectively) and introduce a hydroxyl group on the steroid nucleus of the C21-steroid hormones with the C4-C5 double bond (progesterone and testosterone). Also, P450 46A1 was found to metabolize xenobiotics carrying out dextromethorphan O- and N-demethylations, diclofenac 4'-hydroxylation, and phenacetin O-deethylation. Thus, substrate specificities of P450 46A1 are not limited to cholesterol and include a number of structurally diverse compounds. Activities of P450 46A1 suggest that, in addition to the involvement in cholesterol homeostasis in the brain, this enzyme may participate in metabolism of neurosteroids and drugs that can cross the blood-brain barrier and are targeted to the central nervous system.  相似文献   
34.
The cDNA encoding a second type of mouse beta-galactoside alpha2,6-sialyltransferase (ST6Gal II) was cloned and characterized. The sequence of mouse ST6Gal II encoded a protein of 524 amino acids and showed 77.1% amino acid sequence identity with human ST6Gal II. Recombinant ST6Gal II exhibited alpha2,6-sialyltransferase activity toward oligosaccharides that have the Galbeta1,4GlcNAc sequence at the nonreducing end of their carbohydrate groups, but it exhibited relatively low and no activity toward some glycoproteins and glycolipids, respectively. On the other hand, ST6Gal I, which has been known as the sole member of the ST6Gal-family for more than ten years, exhibited broad substrate specificity toward oligosaccharides, glycoproteins, and a glycolipid, paragloboside. The ST6Gal II gene was mainly expressed in brain and embryo, whereas the ST6Gal I gene was ubiquitously expressed, and its expression levels were higher than those of the ST6Gal II gene. The ST6Gal II gene is located on chromosome 17 and spans over 70 kb of mouse genomic DNA consisting of at least 6 exons. The ST6Gal II gene has a similar genomic structure to the ST6Gal I gene. In this paper, we have shown that ST6Gal II is a counterpart of ST6Gal I.  相似文献   
35.
Sonic hedgehog (Shh), a vertebrate homologue of the Drosophila segment-polarity gene hedgehog, has been reported to play an important role during normal development of various tissues. Abnormal activities of Shh signaling pathway have been implicated in tumorigenesis such as basal cell carcinomas and medulloblastomas. Here we show that Shh signaling negatively regulates prostatic epithelial ductal morphogenesis. In organotypic cultures of developing rat prostates, Shh inhibited cell proliferation and promoted differentiation of luminal epithelial cells. The expression pattern of Shh and its receptors suggests a paracrine mechanism of action. The Shh receptors Ptc1 (Patched1) and Ptc2 were found to be expressed in prostatic stromal cells adjacent to the epithelium, where Shh itself was produced. This paracrine model was confirmed by co-culturing the developing prostate in the presence of stromal cells transfected with a vector expressing a constitutively active form of Smoothened, the real effector of the Shh signaling pathway. Furthermore, expression of activin A and TGF-beta1 that were shown previously to inhibit prostatic epithelial branching was up-regulated following Shh treatment in the organotypic cultures. Taken together, these results suggest that Shh negatively regulates prostatic ductal branching indirectly by acting on the surrounding stromal cells, at least partly via up-regulating expression of activin A and TGF-beta1.  相似文献   
36.
Prior to anaphase in Saccharomyces cerevisiae, Cdc14 protein phosphatase is sequestered within the nucleolus and inhibited by Net1, a component of the RENT complex in budding yeast. During anaphase the RENT complex disassembles, allowing Cdc14 to migrate to the nucleus and cytoplasm where it catalyzes exit from mitosis. The mechanism of Cdc14 release appears to involve the polo-like kinase Cdc5, which is capable of promoting the dissociation of a recombinant Net1.Cdc14 complex in vitro by phosphorylation of Net1. We report here the phosphorylation site mapping of recombinant Net1 (Net1N) and a mutant Net1N allele (Net1N-19m) with 19 serines or threonines mutated to alanine. A variety of chromatographic and mass spectrometric-based strategies were used, including immobilized metal-affinity chromatography, alkaline phosphatase treatment, matrix-assisted laser-desorption post-source decay, and a multidimensional electrospray mass spectrometry-based approach. No one approach was able to identify all phosphopeptides in the tryptic digests of these proteins. Most notably, the presence of a basic residue near the phosphorylated residue significantly hampered the ability of alkaline phosphatase to hydrolyze the phosphate moiety. A major goal of research in proteomics is to identify all proteins and their interactions and post-translational modification states. The failure of any single method to identify all sites in highly phosphorylated Net1N, however, raises significant concerns about how feasible it is to map phosphorylation sites throughout the proteome using existing technologies.  相似文献   
37.
Series of naphthoquinone thiol-crown ethers had been prepared. The antibacterial, antifungal, and cytotoxic activities of these synthetic naphthoquinone thiol-crown ethers were investigated. All of the compounds tested displayed antibacterial, cytotoxic and antifungal activities. The bis-naphthoquinone thiol-crown ether 7a was the most potent inhibitor among tested analogues against Staphylococcus aureus methicillin resistance with MIC value of 2.68 microM.  相似文献   
38.
39.
Hes1 is a negative regulator of inner ear hair cell differentiation   总被引:13,自引:0,他引:13  
Hair cell fate determination in the inner ear has been shown to be controlled by specific genes. Recent loss-of-function and gain-of-function experiments have demonstrated that Math1, a mouse homolog of the Drosophila gene atonal, is essential for the production of hair cells. To identify genes that may interact with Math1 and inhibit hair cell differentiation, we have focused on Hes1, a mammalian hairy and enhancer of split homolog, which is a negative regulator of neurogenesis. We report here that targeted deletion of Hes1 leads to formation of supernumerary hair cells in the cochlea and utricle of the inner ear. RT-PCR analysis shows that Hes1 is expressed in inner ear during hair cell differentiation and its expression is maintained in adulthood. In situ hybridization with late embryonic inner ear tissue reveals that Hes1 is expressed in supporting cells, but not hair cells, of the vestibular sensory epithelium. In the cochlea, Hes1 is selectively expressed in the greater epithelial ridge and lesser epithelial ridge regions which are adjacent to inner and outer hair cells. Co-transfection experiments in postnatal rat explant cultures show that overexpression of Hes1 prevents hair cell differentiation induced by Math1. Therefore Hes1 can negatively regulate hair cell differentiation by antagonizing Math1. These results suggest that a balance between Math1 and negative regulators such as Hes1 is crucial for the production of an appropriate number of inner ear hair cells.  相似文献   
40.
Properties of Chitosanase from Bacillus cereus S1   总被引:3,自引:0,他引:3  
Chitosanase from Bacillus cereus S1 was purified, and the enzymatic properties were investigated. The molecular weight was estimated to 45,000 on SDS-PAGE. Optimum pH was about 6, and stable pH in the incubation at 40°C for 60 min was 6–11. This chitosanase was stable in alkaline side. Optimum temperature was around 60°C, and enzyme activity was relatively stable below 60°C. The degradations of colloidal chitosan and carboxymethyl cellulose (CMC) were about 30 and 20% relative to the value of soluble chitosan, respectively, but colloidal chitin and crystalline cellulose were not almost hydrolyzed. On the other hand, S1 chitosanase adsorbed on colloidal chitin completely and by about 50% also on crystalline cellulose, in contrast to colloidal chitosan, which it did not adsorb. S1 chitosanase finally hydrolyzed 100% N-deacetylated chitosan (soluble state) to chitobiose (27.2%), chitotriose (40.6%), and chitotetraose (32.2%). In the hydrolysis of various chitooligosaccharides, chitobiose and chitotriose were not hydrolyzed, and chitotetraose was hydrolyzed to chitobiose. Chitobiose and chitotriose were released from chitopentaose and chitohexaose. From this specificity, it was hypothesized that the active site of S1 chitosanase recognized more than two glucosamine residues posited in both sides against splitting point for glucosamine polymer. Received: 8 June 1999 / Accepted: 20 July 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号