首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143756篇
  免费   7012篇
  国内免费   3735篇
  2022年   1461篇
  2021年   2698篇
  2020年   1826篇
  2019年   2228篇
  2018年   3060篇
  2017年   2698篇
  2016年   5221篇
  2015年   9781篇
  2014年   9979篇
  2013年   10035篇
  2012年   9976篇
  2011年   7051篇
  2010年   5023篇
  2009年   4776篇
  2008年   3712篇
  2007年   3387篇
  2006年   3059篇
  2005年   8767篇
  2004年   7240篇
  2003年   5162篇
  2002年   2507篇
  2001年   2287篇
  2000年   1340篇
  1999年   2433篇
  1998年   946篇
  1997年   777篇
  1996年   686篇
  1992年   2446篇
  1991年   2454篇
  1990年   2478篇
  1989年   2302篇
  1988年   2222篇
  1987年   2051篇
  1986年   1790篇
  1985年   1860篇
  1984年   1240篇
  1983年   948篇
  1979年   1147篇
  1978年   827篇
  1977年   652篇
  1976年   678篇
  1975年   913篇
  1974年   1025篇
  1973年   1053篇
  1972年   982篇
  1971年   950篇
  1970年   840篇
  1969年   849篇
  1968年   749篇
  1967年   765篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
51.
52.
53.
Indomethacin and substance BW-755C in experiments on isolated myometrium striae of pregnant white rats exert an inhibiting effect on the contractile uterus function due to inhibition of cyclooxygenase or lipoxygenase ways of the arachidonic acid transformation. Prostaglandin F2 alpha is sensitive to functioning of the cyclooxygenase and lipoxygenase ways of the arachidonic acid transformation, while oxytocin--only lipoxygenase one. Conclusions rest on results from multiparametric analysis of the contractile uterus function suggested by authors and confirmed by the pattern recognition method--the Karunen-Loev orthogonal decomposition.  相似文献   
54.
55.
Liquid–liquid phase separation (LLPS) of some IDPs/IDRs can lead to the formation of the membraneless organelles in vitro and in vivo, which are essential for many biological processes in the cell. Here we select three different IDR segments of chaperon Swc5 and develop a polymeric slab model at the residue-level. By performing the molecular dynamics simulations, LLPS can be observed at low temperatures even without charge interactions and disappear at high temperatures. Both the sequence length and the charge pattern of the Swc5 segments can influence the critical temperature of LLPS. The results suggest that the effects of the electrostatic interactions on the LLPS behaviors can change significantly with the ratios and distributions of the charged residues, especially the sequence charge decoration (SCD) values. In addition, three different forms of swc conformation can be distinguished on the phase diagram, which is different from the conventional behavior of the free IDP/IDR. Both the packed form (the condensed-phase) and the dispersed form (the dilute-phase) of swc chains are found to be coexisted when LLPS occurs. They change to the fully-spread form at high temperatures. These findings will be helpful for the investigation of the IDP/IDR ensemble behaviors as well as the fundamental mechanism of the LLPS process in bio-systems.  相似文献   
56.
57.
Addition of a thermostable cytoplasmic fraction leads to the uncoupling of oxidative phosphorylation of the mitochondria. In hyperthyrosis such an effect manifests itself more powerfully than in the control. Addition of the thermostable cytoplasmic fraction induces electrogenic phosphate transport via the mitochondrial membrane. In hyperthyrosis, the activity of the thermostable inducer of phosphate transport in the cytoplasm increases. The functioning of the phosphate cycle may be the cause of the uncoupling of oxidative phosphorylation of the mitochondria during the disease in question.  相似文献   
58.
Summary The physicochemical properties of the interactions of RNA polymerase (RPase) with promoter and nonspecific DNA sequences have been investigated. These show that nonspecific binding is principally an ionic interaction and that promoter binding is more complex, involving nonionic interactions. Nonspecific binding has been shown to be very important in the promoter search, and one-dimensional diffusion can account for the rate at which RPase finds the promoter. Significant differences have been reported in the binding process for various promoters and in the effects of regulatory proteins. Further investigation of these differences will lead to a better understanding of the selectivity and regulation of the initiation process.The pathways of the initiation process have been outlined, by recent studies and considerable progress has been made in determining the rates of interconversion of the intermediate states. A number of questions remain about the detail of initiation and the effects of various parameters on the reactions. Of particular importance is the identification of the point at which the enzyme becomes truly processive. In addition, the step which is rate limiting has not been identified in either the productive or nonproductive process. The mechanistic features of the steps after bond formation are just beginning to yield to investigation.Use of substrate analogs with RPase has led to a picture of the polymerization site according to the ability of the enzyme to incorporate analogs. Base specificity appears to be determined primarily by interaction with the template rather than the enzyme, but the ribose moiety must interact with the site quite specifically. The orientation of the phosphate residues has been determined by NMR, which has also proved to be a valuable probe of the initiation site. At this site base specificity is resident in the enzyme and expressed through the interaction of the base and intrinsic metal, as shown by studies with the Cobalt substituted enzyme. In both initiation and polymerization, the reaction has been shown to proceed by inversion of configuration. Techniques similar to those used for initiation will probably be applied to the polymerization reaction as well, which has not recently received as much attention with respect to mechanism. Functional phenomena such as pausing make the polymerization process particularly promising for producing insight into RPase reactions.  相似文献   
59.
G M?rdh  D S Auld  B L Vallee 《Biochemistry》1987,26(24):7585-7588
Thyroid hormones are potent, instantaneous, and reversible inhibitors of ethanol oxidation catalyzed by isozymes of class I and II human alcohol dehydrogenase (ADH). None of the thyroid hormones inhibits class III ADH. At pH 7.40 the apparent Ki values vary between 55 and 110 microM for triiodothyronine, 35 and greater than 200 microM for thyroxine, and 10 and 23 microM for triiodothyroacetic acid. The inhibition is of a mixed type toward both NAD+ and ethanol. The binding of the thyroid hormone triiodothyronine to beta 1 gamma 1 ADH is mutually exclusive with 1,10-phenanthroline, 4-methylpyrazole, and testosterone, identifying a binding site(s) for the thyroid hormones, which overlap(s) both the 1,10-phenanthroline site near the active site zinc atom and the testosterone binding site, the latter being a regulatory site on the gamma-subunit-containing isozymes and distinct from their catalytic site. The inhibition by thyroid hormones may have implications for regulation of ADH catalysis of ethanol and alcohols in the intermediary metabolism of dopamine, norepinephrine, and serotonin and in steroid metabolism. In concert with other hormonal regulators, e.g., testosterone, the rate of ADH catalysis is capable of being fine tuned in accord with both substrate and modulator concentrations.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号