全文获取类型
收费全文 | 1429篇 |
免费 | 105篇 |
国内免费 | 1篇 |
专业分类
1535篇 |
出版年
2023年 | 5篇 |
2022年 | 16篇 |
2021年 | 38篇 |
2020年 | 30篇 |
2019年 | 14篇 |
2018年 | 31篇 |
2017年 | 37篇 |
2016年 | 38篇 |
2015年 | 71篇 |
2014年 | 90篇 |
2013年 | 93篇 |
2012年 | 102篇 |
2011年 | 99篇 |
2010年 | 48篇 |
2009年 | 52篇 |
2008年 | 78篇 |
2007年 | 54篇 |
2006年 | 64篇 |
2005年 | 51篇 |
2004年 | 48篇 |
2003年 | 57篇 |
2002年 | 46篇 |
2001年 | 40篇 |
2000年 | 47篇 |
1999年 | 40篇 |
1998年 | 11篇 |
1997年 | 7篇 |
1996年 | 11篇 |
1995年 | 4篇 |
1994年 | 6篇 |
1993年 | 10篇 |
1992年 | 19篇 |
1991年 | 23篇 |
1990年 | 16篇 |
1989年 | 16篇 |
1988年 | 9篇 |
1987年 | 11篇 |
1986年 | 16篇 |
1985年 | 11篇 |
1983年 | 9篇 |
1982年 | 6篇 |
1980年 | 4篇 |
1979年 | 9篇 |
1978年 | 5篇 |
1977年 | 4篇 |
1976年 | 6篇 |
1974年 | 3篇 |
1973年 | 6篇 |
1972年 | 3篇 |
1970年 | 9篇 |
排序方式: 共有1535条查询结果,搜索用时 15 毫秒
71.
Yoshihide Komatsu 《Bioscience, biotechnology, and biochemistry》2013,77(9):1328-1339
14C-Labelled showdomycin was rapidly taken up by Escherichia coli K-12 cells. The showdomycin uptake was highly temperature dependent, sensitive to azide and N-ethyl-maleimide, but was only partially inhibited by treatment with high concentration of iodoacetic acid.The uptake of showdomycin was inhibited by a wide variety of nucleosides but not by purine and pyrimidine bases, nucleotides, ribose or ribose-5-phosphate. The inhibition of showdomycin uptake by adenosine was of a competitive type.Since nucleosides inhibited the uptake of showdomycin but did not facilitate its efflux, they must play a role of inhibitors to the entry of the antibiotic into cells.Removal of extracellular showdomycin by washing, or inhibition of its subsequent entry into cells by the addition of nucleosides or sulfhydryl compounds resulted in a rapid decrease in the intracellular level of the antibiotic during subsequent incubation. 相似文献
72.
James R. P. Worth Shota Sakaguchi Nobuyuki Tanaka Michimasa Yamasaki Yuji Isagi 《Biological journal of the Linnean Society. Linnean Society of London》2013,108(2):263-277
Sciadopitys verticillata is amongst the most relictual of all plants, being the last living member of an ancient conifer lineage, the Sciadopityaceae, and is distributed in small and disjunct populations in high rainfall regions of Japan. Although mega‐fossils indicate the persistence of the species within Japan through the Pleistocene glacial–interglacial cycles, how the species withstood the colder and drier climates of the glacials is not well known. The present study utilized phylogeography and palaeodistribution modelling to test whether the species survived within pollen‐based coastal temperate forest glacial refugia or within previously unidentified refugia close to its current range. Sixteen chloroplast haplotypes were found that displayed significant geographical structuring. Unexpectedly, northern populations in central Honshu most distant from coastal refugia had the highest chloroplast diversity and were differentiated from the south, a legacy of glacial populations possibly in inland river valleys close to its current northern range. By contrast, populations near putative coastal refugia in southern Japan, harboured the lower chloroplast diversity and were dominated by a single haplotype. Fragment size polymorphism at a highly variable and homoplasious mononucleotide repeat region in the trnT‐trnL intergenic spacer reinforced the contrasting patterns of diversity observed between northern and southern populations. The divergent histories of northern and southern populations revealed in the present study will inform the management of this globally significant conifer. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 263–277. 相似文献
73.
Hashimoto M Kisseleva L Sawa S Furukawa T Komatsu S Koshiba T 《Plant & cell physiology》2004,45(5):550-559
Plant roots have important roles not only in absorption of water and nutrients, but also in stress tolerance such as desiccation, salt, and low temperature. We have investigated stress-response proteins from rice roots using 2-dimensional polyacrylamide-gel electrophoresis and found a rice protein, RO-292, which was induced specifically in roots when 2-week-old rice seedlings were subjected to salt and drought stress. The full-length RO-292 cDNA was cloned, and was determined to encode a protein of 160 amino acid residues (16.9 kDa, pI 4.74). The deduced amino acid sequence showed high similarity to known rice PR10 proteins, OsPR10a/PBZ1 and OsPR10b. RO-292 mRNA accumulated rapidly upon drought, NaCl, jasmonic acid and probenazole, but not by exposure to low temperature or by abscisic acid and salicylic acid. The RO-292 gene was also up-regulated by infection with rice blast fungus. Interestingly, induction was observed almost exclusively in roots, thus we named the gene RSOsPR10 (root specific rice PR10). The present results indicate that RSOsPR10 is a novel rice PR10 protein, which is rapidly induced in roots by salt, drought stresses and blast fungus infection possibly through activation of the jasmonic acid signaling pathway, but not the abscisic acid and salicylic acid signaling pathway. 相似文献
74.
75.
Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments 总被引:11,自引:0,他引:11
Tanaka N Fujita M Handa H Murayama S Uemura M Kawamura Y Mitsui T Mikami S Tozawa Y Yoshinaga T Komatsu S 《Molecular genetics and genomics : MGG》2004,271(5):566-576
Despite recent progress in sequencing the complete genome of rice (Oryza sativa), the proteome of this species remains poorly understood. To extend our knowledge of the rice proteome, the subcellular compartments, which include plasma membranes (PM), vacuolar membranes (VM), Golgi membranes (GM), mitochondria (MT), and chloroplasts (CP), were purified from rice seedlings and cultured suspension cells. The proteins of each of these compartments were then systematically analyzed using two-dimensional (2D) electrophoresis, mass spectrometry, and Edman sequencing, followed by database searching. In all, 58 of the 464 spots detected by 2D electrophoresis in PM, 43 of the 141 spots in VM, 46 of the 361 spots in GM, 146 in the 672 spots in MT, and 89 of the 252 spots in CP could be identified by this procedure. The characterized proteins were found to be involved in various processes, such as respiration and the citric acid cycle in MT; photosynthesis and ATP synthesis in CP; and antifungal defense and signal systems in the membranes. Edman degradation revealed that 60–98% of N-terminal sequences were blocked, and the ratios of blocked to unblocked proteins in the proteomes of the various subcellular compartments differed. The data on the proteomes of subcellular compartments in rice will be valuable for resolving questions in functional genomics as well as for genome-wide exploration of plant function.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Jürgens 相似文献
76.
To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel‐based and a LC MS/MS‐based proteomics method. Two‐day‐old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two‐phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel‐based proteomics, four and eight protein spots were identified as up‐ and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up‐ and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low‐abundance proteins could be identified by the LC MS/MS‐based method. Three homologues of plasma membrane H+‐ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H+‐ATPase protein. 相似文献
77.
Hashimoto M Komatsu H Kozone I Kawaide H Abe H Natsume M 《Bioscience, biotechnology, and biochemistry》2005,69(2):315-320
The biosynthesis of pamamycin-607 (PM-607), a sixteen-membered macrodiolide compound, was studied with 13C- and 15N-labeled precursor units in Streptomyces alboniger. Feeding experiments with 13C-labeled acetate or propionate indicate that the carbon skeleton of PM-607 was derived from six acetate, four propionate and three succinate units. MS analyses of 15N-labeled PM-607 suggest that the nitrogen atom in PM-607 was derived from the alpha-amino group of an amino acid. 相似文献
78.
Li Ni‐Komatsu Jennifer K. Leung Darren Williams Jaeki Min Sonya M. Khersonsky Young‐Tae Chang Seth J. Orlow 《Pigment cell & melanoma research》2005,18(6):447-453
As most of the available depigmenting agents exhibit only modest activity and some exhibit toxicities that lead to adverse side effects after long‐term usage, there remains a need for novel depigmenting agents. Chemical genetic screening was performed on cultured melanocytes to identify novel depigmenting compounds. By screening a tagged‐triazine library, we identified four compounds, TGH11, TGD10, TGD39 and TGJ29, as potent pigmentation inhibitors with IC50 values in the range of 10 μM. These newly identified depigmenting compounds were found to function as reversible inhibitors of tyrosinase, the key enzyme involved in melanin synthesis. Tyrosinase was further confirmed as the cellular target of these compounds by affinity chromatography. Kinetic data suggest that all four compounds act as competitive inhibitors of tyrosinase, most likely competing with l ‐3,4‐dihydroxyphenylalanine (l ‐DOPA) for binding to the DOPA‐binding site of the enzyme. No effect on levels of tyrosinase protein, processing or trafficking was observed upon treatment of melanocytes with these compounds. Cytotoxicity was not observed with these compounds at concentrations up to 20 μM. Our data suggest that TGH11, TGD10, TGD39 and TGJ29 are novel potent tyrosinase inhibitors with potential beneficial effects in the treatment of cutaneous hyperpigmentation. 相似文献
79.
Sugawara T Zaima N Yamamoto A Sakai S Noguchi R Hirata T 《Bioscience, biotechnology, and biochemistry》2006,70(12):2906-2912
Sea cucumber is a health-beneficial food, and contains a variety of physiologically active substances including glycosphingolipids. We show here the sphingoid base composition of cerebrosides prepared from sea cucumber and the cytotoxicity against human colon cancer cell lines. The composition of sphingoid bases prepared from sea cucumber was different from that of mammals, and the major constituents estimated from mass spectra had a branched C17-19 alkyl chain with 1-3 double bonds. The viability of DLD-1, WiDr and Caco-2 cells treated with sea cucumber sphingoid bases was reduced in a dose-dependent manner and was similar to that of cells treated with sphingosine. The sphingoid bases induced such a morphological change as condensed chromatin fragments and increased the caspase-3 activity, indicating that the sphingoid bases reduced the cell viability by causing apoptosis in these cells. Sphingolipids of sea cucumber might therefore serve as bioactive dietary components to suppress colon cancer. 相似文献
80.
Iwata J Ezaki J Komatsu M Yokota S Ueno T Tanida I Chiba T Tanaka K Kominami E 《The Journal of biological chemistry》2006,281(7):4035-4041
Peroxisomes are degraded by autophagic machinery termed "pexophagy" in yeast; however, whether this is essential for peroxisome degradation in mammals remains unknown. Here we have shown that Atg7, an essential gene for autophagy, plays a pivotal role in the degradation of excess peroxisomes in mammals. Following induction of peroxisomes by a 2-week treatment with phthalate esters in control and Atg7-deficient livers, peroxisomal degradation was monitored within 1 week after discontinuation of phthalate esters. Although most of the excess peroxisomes in the control liver were selectively degraded within 1 week, this rapid removal was exclusively impaired in the mutant liver. Furthermore, morphological analysis revealed that surplus peroxisomes, but not mutant hepatocytes, were surrounded by autophagosomes in the control. Our results indicated that the autophagic machinery is essential for the selective clearance of excess peroxisomes in mammals. This is the first direct evidence for the contribution of autophagic machinery in peroxisomal degradation in mammals. 相似文献