首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   48篇
  2023年   4篇
  2021年   8篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   12篇
  2015年   13篇
  2014年   15篇
  2013年   15篇
  2012年   21篇
  2011年   19篇
  2010年   19篇
  2009年   20篇
  2008年   22篇
  2007年   20篇
  2006年   24篇
  2005年   22篇
  2004年   17篇
  2003年   26篇
  2002年   20篇
  2001年   7篇
  2000年   15篇
  1999年   12篇
  1998年   10篇
  1997年   8篇
  1996年   7篇
  1995年   11篇
  1994年   4篇
  1993年   11篇
  1992年   16篇
  1991年   8篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1976年   4篇
  1975年   2篇
  1971年   2篇
  1969年   2篇
  1968年   2篇
排序方式: 共有497条查询结果,搜索用时 31 毫秒
71.
72.
73.
Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world''s longest‐lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature‐adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF‐1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.  相似文献   
74.
Somatopause refers to the gradual declines in growth hormone (GH) and insulin‐like growth factor‐1 throughout aging. To define how induced somatopause affects skeletal integrity, we used an inducible GH receptor knockout (iGHRKO) mouse model. Somatopause, induced globally at 6 months of age, resulted in significantly more slender bones in both male and female iGHRKO mice. In males, induced somatopause was associated with progressive expansion of the marrow cavity leading to significant thinning of the cortices, which compromised bone strength. We report progressive declines in osteocyte lacunar number, and increases in lacunar volume, in iGHRKO males, and reductions in lacunar number accompanied by ~20% loss of overall canalicular connectivity in iGHRKO females by 30 months of age. Induced somatopause did not affect mineral/matrix ratio assessed by Raman microspectroscopy. We found significant increases in bone marrow adiposity and high levels of sclerostin, a negative regulator of bone formation in iGHRKO mice. Surprisingly, however, despite compromised bone morphology, osteocyte senescence was reduced in the iGHRKO mice. In this study, we avoided the confounded effects of constitutive deficiency in the GH/IGF‐1 axis on the skeleton during growth, and specifically dissected its effects on the aging skeleton. We show here, for the first time, that induced somatopause compromises bone morphology and the bone marrow environment.  相似文献   
75.
Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification—amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two‐Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure‐Function Linkage Database, SFLD) self‐identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self‐identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well‐curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP‐identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F‐measure and performance analysis on the enolase search results and comparison to GEMMA and SCI‐PHY demonstrate that TuLIP avoids the over‐division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results.  相似文献   
76.
Rap1 enhances integrin-mediated adhesion but the link between Rap1 activation and integrin function in collagen phagocytosis is not defined. Mass spectrometry of Rap1 immunoprecipitates showed that the association of Rap1 with nonmuscle myosin heavy-chain II-A (NMHC II-A) was enhanced by cell attachment to collagen beads. Rap1 colocalized with NM II-A at collagen bead-binding sites. There was a transient increase in myosin light-chain phosphorylation after collagen-bead binding that was dependent on myosin light-chain kinase but not Rho kinase. Inhibition of myosin light-chain phosphorylation, but not myosin II-A motor activity inhibited collagen-bead binding and Rap activation. In vitro binding assays demonstrated binding of Rap1A to filamentous myosin rods, and in situ staining of permeabilized cells showed that NM II-A filaments colocalized with F-actin at collagen bead sites. Knockdown of NM II-A did not affect talin, actin, or β1-integrin targeting to collagen beads but targeting of Rap1 and vinculin to collagen was inhibited. Conversely, knockdown of Rap1 did not affect localization of NM II-A to beads. We conclude that MLC phosphorylation in response to initial collagen-bead binding promotes NM II-A filament assembly; binding of Rap1 to myosin filaments enables Rap1-dependent integrin activation and enhanced collagen phagocytosis.  相似文献   
77.
Multiple myeloma is characterized by the malignant growth of immunoglobulin producing plasma cells, predominantly in the bone marrow. The effects of primary human mesenchymal stromal cells on the differentiation phenotype of multiple myeloma cells were studied by co-culture experiments. The incubation of multiple myeloma cells with bone marrow-derived mesenchymal stromal cells resulted in significant reduction of the expression of the predominant plasma cell differentiation markers CD38 and CD138, and cell surface immunoglobulin light chain. While the down-regulation of CD138 by stromal cells was completely dependent on their adhesive interactions with the multiple myeloma cells, interleukin-6 induced specific down-regulation of CD38. Mesenchymal stromal cells or their conditioned media inhibited the growth of multiple myeloma cell line, thereby reducing the overall amounts of secreted light chains. Analysis of primary multiple myeloma bone marrow samples reveled that the expression of CD38 on multiple myeloma cells was not affected by adhesive interactions. The ex vivo propagation of primary multiple myeloma cells resulted in significant increase in their differentiation markers. Overall, the data indicate that the bone marrow-derived mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.  相似文献   
78.
Gold standard datasets on protein complexes are key to inferring and validating protein–protein interactions. Despite much progress in characterizing protein complexes in the yeast Saccharomyces cerevisiae, numerous researchers still use as reference the manually curated complexes catalogued by the Munich Information Center of Protein Sequences database. Although this catalogue has served the community extremely well, it no longer reflects the current state of knowledge. Here, we report two catalogues of yeast protein complexes as results of systematic curation efforts. The first one, denoted as CYC2008, is a comprehensive catalogue of 408 manually curated heteromeric protein complexes reliably backed by small-scale experiments reported in the current literature. This catalogue represents an up-to-date reference set for biologists interested in discovering protein interactions and protein complexes. The second catalogue, denoted as YHTP2008, comprises 400 high-throughput complexes annotated with current literature evidence. Among them, 262 correspond, at least partially, to CYC2008 complexes. Evidence for interacting subunits is collected for 68 complexes that have only partial or no overlap with CYC2008 complexes, whereas no literature evidence was found for 100 complexes. Some of these partially supported and as yet unsupported complexes may be interesting candidates for experimental follow up. Both catalogues are freely available at: http://wodaklab.org/cyc2008/.  相似文献   
79.
3-Hydroxy-2-methyl-4-pyrone and 2-ethyl-3-hydroxy-4-pyrone (maltol and ethyl maltol, respectively) have proven especially suitable as ligands for vanadyl ions, in potential insulin enhancing agents for diabetes mellitus. Both bis(maltolato)oxovanadium(IV) (BMOV), and the ethylmaltol analog, bis(ethylmaltolato)oxovanadium(IV) (BEOV), have the desired intermediate stability for pro-drug use, and have undergone extensive pre-clinical testing for safety and efficacy. Pharmacokinetic evaluation indicates a pattern of biodistribution consistent with fairly rapid dissociation and uptake, binding to serum transferrin for systemic circulation and transport to tissues, with preferential uptake in bone. These bis-ligand oxovanadium(IV) (VOL2) compounds have a clear advantage over inorganic vanadyl sulfate in terms of bioavailability and pharmaceutical efficacy. BEOV has now completed Phase I and has advanced to Phase II clinical trials. In the Phase I trial, a range of doses from 10 mg to 90 mg BEOV, given orally to non-diabetic volunteers, resulted in no adverse effects; all biochemical parameters remained within normal limits. In the Phase IIa trial, BEOV (AKP-020), 20 mg, daily for 28 days, per os, in seven type 2 diabetic subjects, was associated with reductions in fasting blood glucose and %HbA1c; improved responses to oral glucose tolerance testing, versus the observed worsening of diabetic symptoms in the two placebo controls.  相似文献   
80.
Plasmalemmal phosphatidylinositol (PI) 4,5-bisphosphate (PI4,5P2) synthesized by PI 4-phosphate (PI4P) 5-kinase (PIP5K) is key to the polymerization of actin that drives chemotaxis and phagocytosis. We investigated the means whereby PIP5K is targeted to the membrane and its fate during phagosome formation. Homology modeling revealed that all PIP5K isoforms feature a positively charged face. Together with the substrate-binding loop, this polycationic surface is proposed to constitute a coincidence detector that targets PIP5Ks to the plasmalemma. Accordingly, manipulation of the surface charge displaced PIP5Ks from the plasma membrane. During particle engulfment, PIP5Ks detached from forming phagosomes as the surface charge at these sites decreased. Precluding the change in surface charge caused the PIP5Ks to remain associated with the phagosomal cup. Chemically induced retention of PIP5K-γ prevented the disappearance of PI4,5P2 and aborted phagosome formation. We conclude that a bistable electrostatic switch mechanism regulates the association/dissociation of PIP5Ks from the membrane during phagocytosis and likely other processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号