首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   10篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有91条查询结果,搜索用时 625 毫秒
31.
Complementation group C of xeroderma pigmentosum (XP) represents one of the most common forms of this cancer-prone DNA repair syndrome. The primary defect is located in the subpathway of the nucleotide excision repair system, dealing with the removal of lesions from the non-transcribing sequences ('genome-overall' repair). Here we report the purification to homogeneity and subsequent cDNA cloning of a repair complex by in vitro complementation of the XP-C defect in a cell-free repair system containing UV-damaged SV40 minichromosomes. The complex has a high affinity for ssDNA and consists of two tightly associated proteins of 125 and 58 kDa. The 125 kDa subunit is an N-terminally extended version of previously reported XPCC gene product which is thought to represent the human homologue of the Saccharomyces cerevisiae repair gene RAD4. The 58 kDa species turned out to be a human homologue of yeast RAD23. Unexpectedly, a second human counterpart of RAD23 was identified. All RAD23 derivatives share a ubiquitin-like N-terminus. The nature of the XP-C defect implies that the complex exerts a unique function in the genome-overall repair pathway which is important for prevention of skin cancer.  相似文献   
32.
Changes in the metabolic activities of peroxide-producing systemsand peroxide-scavenging systems after freezing and thawing inflower buds of the apple, Malus pumila Mill., were studied withspecial reference to freezing injury. In flower buds of the‘McIntosh’ apple that were frozen below lethal temperatures,the activity of NADH-Cyt c reductase (EC 1.6.99.3 [EC] ), one of theenzymes in the electron-transport chains that are related tothe peroxide-producing systems, decreased slightly, while thatof Cyt c oxidase (EC 1.9.3.1 [EC] ) hardly changed. By contrast, theactivities of glucose-6-phosphate dehydrogenase (EC 1.1.1.49 [EC] ),dehydroascorbate reductase (EC 1.8.5.1 [EC] ) and ascorbate peroxidase(EC 1.11.1.11 [EC] ), which are involved in the peroxide-scavengingsystems, decreased to very low levels. The activity of glyceraldehyde-3-phosphatedehydrogenase (EC 1.2.1.12 [EC] ) also decreased markedly. However,little change was observed in the activities of hexokinase (EC2.7.1.1 [EC] ), glucosephosphate isomerase (EC 5.3.1.9 [EC] ), glutathionereductase (EC 1.6.4.2 [EC] ) and glutathione peroxidase (EC 1.11.1.9 [EC] ).Examination of substrates involved in the peroxide-scavengingsystems revealed that the levels of glucose-6-phosphate andfructoses-phosphate decreased to approximately 10–4 to10–5 M and 10–5 M, respectively, and the levelsof GSH decreased to about 10–5 M or became barely detectable.A decrease in the levels of GSSG also occurred while levelsof ascorbate rose slightly. Similar results were observed withflower buds from ‘Starking Delicious’ and ‘Jonathan’apple trees. These results suggest that the freezing injury to apple flower-budsis closely related to the collapse of the peroxide-scavengingsystems that are coupled with the pentose phosphate cycle. Theresults also suggest that the dysfunction of these peroxide-scavengingsystems is caused by H2O2, which may be produced during freezingand thawing. (Received March 14, 1992; Accepted June 5, 1992)  相似文献   
33.
34.
A temperature-sensitive growth mutant tsFS20 isolated from mouse FM3A cells was identified as a mutant with thermolabile ubiquitin-activating enzyme E1 by transfection with a full-length cDNA encoding the human E1 enzyme and cell-cell hybridization with an authentic E1 mutant ts85 previously isolated from FM3A cells. The resulting transformants produced thermoresistant E1 activity. Upon shift-up of temperature, asynchronously growing tsFS20 cells showed multiple points of cell-cycle arrest. At the nonpermissive temperature, tsFS20 cells that had been synchronized at the G1-S-phase progressed and accumulated in the mid-S-phase, as evidenced by the absence of G2-specific cdc2 kinase activity, while ts85 mutant cells, the widely used E1 mutant, reached the G2-phase and were arrested. Thus, the E1 mutation seemed to be involved in progression in the S-phase as well as in the G2-phase in the cell cycle. Degradation of short-lived abnormal proteins in tsFS20 cells was decreased to about 50% at the nonpermissive temperature, while the block was fully restored to the wild-type level in the transformant cells. Relevance of the unusually high incidence of the temperature-sensitive E1 mutation was discussed in terms of the E1 as a determinant of heat tolerance of cells.  相似文献   
35.
A chemical cross-linking reagent, dithio-bis(succinimidyl propionate), is known to be capable of cross-linking histones in nucleosomes so as to give one major product with the molecular weight of about 100,000. Because the product has been supposed to represent the cross-linked histone octamer, the reaction has been used for studying the movements of core histones in nucleosomes. However, the precise protein composition of the product has not been determined thus far, so that the use of the reaction was limited. We report here that the 100 kilodalton product is composed of the core histones, and does not contain significant amounts of any other proteins. Moreover, quantitative analysis of the content of each core histone confirmed that the four types of core histones participate in the product with an equal molar ratio. As one can specifically observe the behaviors of histone octamers with this reaction, it should be useful for research in various fields related to the dynamics and functions of the nucleosome.  相似文献   
36.
mHR23B encodes one of the two mammalian homologs of Saccharomyces cerevisiae RAD23, a ubiquitin-like fusion protein involved in nucleotide excision repair (NER). Part of mHR23B is complexed with the XPC protein, and this heterodimer functions as the main damage detector and initiator of global genome NER. While XPC defects exist in humans and mice, mutations for mHR23A and mHR23B are not known. Here, we present a mouse model for mHR23B. Unlike XPC-deficient cells, mHR23B(-/-) mouse embryonic fibroblasts are not UV sensitive and retain the repair characteristics of wild-type cells. In agreement with the results of in vitro repair studies, this indicates that mHR23A can functionally replace mHR23B in NER. Unexpectedly, mHR23B(-/-) mice show impaired embryonic development and a high rate (90%) of intrauterine or neonatal death. Surviving animals display a variety of abnormalities, including retarded growth, facial dysmorphology, and male sterility. Such abnormalities are not observed in XPC and other NER-deficient mouse mutants and point to a separate function of mHR23B in development. This function may involve regulation of protein stability via the ubiquitin/proteasome pathway and is not or only in part compensated for by mHR23A.  相似文献   
37.
38.
The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.  相似文献   
39.
40.
SM-11044 is the only beta-adrenergic agonist that inhibits guinea pig eosinophil chemotaxis and induces relaxation of depolarized rat colon tonus. We have previously reported the purification of a 34 kDa photoaffinity-labeled SM-11044 binding protein (SMBP) from rat colon that may mediate the biological effects of the ligand and that differs from all known monoamine receptors (Sugasawa et al., J. Biol. Chem. 272 (1997) 21244). The present report describes partial amino acid sequence of rat SMBP and molecular cloning of corresponding human SMBP (hSMBP) cDNA. This cDNA encodes a 588 amino acid residue polypeptide comprising a signal peptide, a long hydrophilic amino-terminal region, and a highly hydrophobic C-terminal portion organized into nine putative transmembrane domains. The sequence and structure of hSMBP shows homology to members of a new transmembrane protein 9 superfamily (TM9SF). Comparison of hSMBP with related protein sequences from yeast, plant and human revealed two subgroups within TM9SF. The members of these groups differ in length and have characteristic amino acid sequence motifs in their amino-terminal portion. Northern blot analysis revealed two major SMBP mRNAs, at 3.4 and 3.8 kb, that were present in all the human tissues examined. Western blot experiments detected SMBP as a 70 kDa protein that may be further cleaved into an active 34 kDa N-terminal polypeptide. Stable Chinese Hamster Ovary cell transfectants expressing hSMBP cDNA displayed specific binding of [(125)I]iodocyanopindolol that was displaced by SM-11044 in a dose-dependent manner. Thus, SMBP is the first member of TM9SF with functional ligand binding properties, suggesting that some of these integral membrane proteins may function as channels, small molecule transporters or receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号