首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   32篇
  2023年   4篇
  2022年   7篇
  2021年   12篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   15篇
  2016年   23篇
  2015年   31篇
  2014年   41篇
  2013年   45篇
  2012年   51篇
  2011年   58篇
  2010年   25篇
  2009年   19篇
  2008年   56篇
  2007年   48篇
  2006年   39篇
  2005年   38篇
  2004年   28篇
  2003年   38篇
  2002年   34篇
  2001年   7篇
  2000年   3篇
  1999年   10篇
  1998年   8篇
  1996年   4篇
  1995年   4篇
  1994年   9篇
  1993年   5篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有727条查询结果,搜索用时 702 毫秒
41.
Effects of cAMP accumulation on ATP-dependent priming and Ca(2+)-dependent fusion in Ca(2+)-regulated exocytosis were examined in antral mucous cells of guinea pigs by using video-enhanced contrast microscopy. The Ca(2+)-regulated exocytosis activated by 1 microM ACh consisted of two phases, an initial transient phase followed by a sustained phase, which were potentiated by cAMP accumulation. Depletion of ATP by 100 microM dinitrophenol (uncoupler of oxidative phosphorylation) or anoxia induced the sustained phase without the initial transient phase in Ca(2+)-regulated exocytosis. However, accumulation of cAMP before depletion of ATP induced and potentiated an initial transient phase followed by a sustained phase in Ca(2+)-regulated exocytosis. This suggests that the initial transient phase of Ca(2+)-regulated exocytosis is induced by fusion of all primed granules maintained by ATP and that accumulation of cAMP accelerates ATP-dependent priming of the exocytotic cycle. Moreover, ACh and Ca(2+) dose-response studies showed that accumulation of cAMP shifted the dose-response curves to the low concentration side, suggesting that it increases Ca(2+) sensitivity in the fusion of the exocytotic cycle. In conclusion, cAMP accumulation increases the number of primed granules and Ca(2+) sensitivity of the fusion, which potentiates Ca(2+)-regulated exocytosis in antral mucous cells.  相似文献   
42.
Although the four polypeptides of blasticidin S (BS) deaminase (BSD) are packed rather tightly coordinated to the "structural and catalytic" zinc atom of each subunit, the C-terminal region of the enzyme was suggested to be somewhat molten and flexible [M. Kimura, S. Sekido, Y. Isogai, and I. Yamaguchi (2000) J. Biochem. 127, 955-963]. To understand roles of this flexible region, we constructed five C-terminal deletion variants of BSD (each successively deleted from the C-terminal end up to five residues) and analyzed their biochemical properties focusing on the structure and activity of the enzyme. BSD and all of the deletion mutants showed the unique rigid conformation (e.g., characterized by their stabilities in SDS solution) and high levels of resistance against protease digestions. Furthermore, both the wild-type and deletion apoenzymes exhibited similar physical properties in thermodynamic refolding into the stable tetramer conformation. However, these small C-terminal deletions exerted deleterious effects on the catalytic efficiency of the enzyme as indicated by their strongly reduced k(cat)/K(m) value. Judging from the altered kinetic parameters and unaltered structural properties of the deletion variants, these C-terminal residues appear to be directly involved in enzyme-substrate interaction. In this short flexible region, Tyr-126, Trp-128, and Gly-130 were the key residues. Most notably, removal of Gly-130 markedly increased K(m) for BS without affecting its k(cat) value. These results indicate that the flexible C-terminal region is important for catalytic function and that a single Gly residue at the C-terminal end of BSD contributes significantly in facilitating access of a substrate to the active site.  相似文献   
43.
This study presents breeding and pollination systems of Aristolochia maxima and A. inflata in a seasonal tropical forest of Panama. Aristolochia is the most diverse genus of Aristolochiaceae, with ~120 species distributed throughout the tropics and subtropics. All the Aristolochia species studied so far are pollinated by saprophagous flies of different families, which are presumably deceived by floral odor. Flowers of many species have trap-and-release mechanisms. The flowers attract and imprison pollinators during the female stage first day of flowering and release them after anther dehiscence. Pollination systems of A. maxima and A. inflata are different from those of other Aristolochia in lacking trap mechanisms. Furthermore, the pollinators oviposit in the flowers, and their larvae grow on the fallen, decaying flowers on the ground. Therefore, the plants have a mutualistic relationship with their pollinators. Self-compatible A. inflata is pollinated by Megaselia sakaiae (Phoridae, Diptera). The pollinator may be specialized to Aristolochia flowers, which is the only substrate for larval development. On the other hand, self-incompatible A. maxima is pollinated by Drosophila spp. (Drosophilidae, Diptera), which utilize Aristolochia flowers as a breeding site only occasionally. This pollination mutualism might have evolved from deceit pollination.  相似文献   
44.
An arsenate-resistant mutant AR3 of Chlamydomonas reinhardtii is a recessive mutant generated by random insertional mutagenesis using the ARG7 gene. AR3 shows about 10-fold resistance against arsenate toxicity compared with the wild type. By using a flanking region of an inserted tag as a probe, we cloned the corresponding wild-type allele (PTB1) of a mutated gene, which could completely complement the arsenate-resistance phenotype of AR3. The size of PTB1 cDNA is about 6.0 kb and it encodes a putative protein comprising 1666 amino acid residues. This protein exhibits significant sequence similarity with the yeast Pho89 protein, which is known to be a Na(+)/Pi co-transporter, although the PTB1 protein carries an additional Gln- and Gly-rich large hydrophilic region in the middle of its primary structure. Analyses of arsenic accumulation and release revealed that PTB1-disrupted cells show arsenate resistance due to low arsenate uptake. These results suggest that the PTB1 protein is a factor involved in arsenate (or Pi) uptake. Kinetics of Pi uptake revealed that the activity of high-affinity Pi transport component in AR3 is more activated than that in the wild type.  相似文献   
45.
Alpha-ketol linolenic acid [KODA, 9,10-ketol-octadecadienoic acid, that is 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid] is a signal compound found in Lemna paucicostata after exposure to stress, such as drought, heat or osmotic stress. KODA reacts with catecholamines to generate products that strongly induce flowering, although KODA itself is inactive [Yokoyama et al. (2000) Plant Cell Physiol. 41: 110; Yamaguchi et al. (2001) Plant Cell Physiol. 42: 1201]. We examined the role of KODA in the flower-induction process of Pharbitis nil (violet). KODA was identified for the first time in seedlings of P. nil grown under a flower-inductive condition (16-h dark exposure), by means of LC-SIM and LC-MS/MS. In addition, the changes in endogenous KODA levels (evaluated after esterification of KODA with 9-anthryldiazomethane) during the flower-inductive phase in short day-induced cotyledons were closely related to flower induction. The KODA concentration sharply increased in seedlings during the last 2 h of a 16-h dark period, while the KODA level showed no significant elevation under continuous light. The increase of KODA level occurred in cotyledonal blades, but not in other parts (petiole, hypocotyls and shoot tip). When the 16-h dark period was interrupted with a 10-min light exposure at the 8th h, flower induction was blocked and KODA level also failed to increase. The degree of elevation of KODA concentration in response to 16-h dark exposure was the highest when the cotyledons had just unfolded, and gradually decreased in seedlings grown under continuous light for longer periods, reaching the basal level at the 3rd day after unfolding. Flower-inducing ability also decreased in a similar manner. These results suggest that KODA may be involved in flower induction in P. nil.  相似文献   
46.
Human proximal tubular (PT) epithelial cells were isolated from urine and monoclonally cultured as monolayers for 1 wk, after which they were subcultured between two layers of collagen gel, designated a "collagen gel sandwich." Under these culture conditions, PT cells formed three-dimensional tubular structures exhibiting distinct polarized cell morphology. Scanning and transmission electron microscopic studies showed that they bore numerous microvilli at the apical surface and that they closely contacted the collagen gel at the basal surface. These studies indicate that PT cells exfoliated in urine still exhibit the potential to proliferate and form organized structures mimicking in vivo tubules. Because of the current lack of useful culture systems for human tubular epithelial cells originating from kidney tissue, we suggest that this unique culture system using voided PT cells in urine could open up new avenues to study not only the mechanisms of morphogenesis but also the physiology of human PT cells.  相似文献   
47.
Some spices showed high inhibitory activity against ovalbumin permeation through Caco-2 cell monolayers. Pimentol from allspice, rosmarinic acid and luteolin-7-O-beta-glucuronide from thyme, quercetin-3-O-beta-glucuronide from coriander and rutin from tarragon were identified as the active principles. A structure-activity relationship study among the active isolates and their related compounds indicated that the presence of a catechol structure played an important role in the inhibitory activity of each compound.  相似文献   
48.
To develop a simple, speedy, economical and widely applicable method for multiple-site mutagenesis, we have substantially modified the Quik-Change™ Site-Directed Mutagenesis Kit protocol (Stratagene, La Jolla, CA). Our new protocol consists of (i) a PCR reaction using an in vitro technique, LDA (ligation-during-amplification), (ii) a DpnI treatment to digest parental DNA and to make megaprimers and (iii) a synthesis of double-stranded plasmid DNA for bacterial transformation. While the Quik Change™ Kit protocol introduces mutations at a single site, requiring two complementary mutagenic oligonucleotides, our new protocol requires only one mutagenic oligonucleotide for a mutation site, and can introduce mutations in a plasmid at multiple sites simultaneously. A targeting efficiency >70% was consistently achieved for multiple-site mutagenesis. Furthermore, the new protocol allows random mutagenesis with degenerative primers, because it does not use two complementary primers. Our mutagenesis strategy was successfully used to alter the fluorescence properties of green fluorescent protein (GFP), creating a new-color GFP mutant, cyan-green fluorescent protein (CGFP). An eminent feature of CGFP is its remarkable stability in a wide pH range (pH 4–12). The use of CGFP would allow us to monitor protein localization quantitatively in acidic organelles in secretory pathways.  相似文献   
49.
Iron (Fe) deficiency significantly effects plant growth and development. Plant symptoms under excess zinc (Zn) resemble symptoms of Fe‐deficient plants. To understand cross‐talk between excess Zn and Fe deficiency, we investigated physiological parameters of Arabidopsis plants and applied iTRAQ‐OFFGEL quantitative proteomic approach to examine protein expression changes in microsomal fraction from Arabidopsis shoots under those physiological conditions. Arabidopsis plants manifested shoot inhibition and chlorosis symptoms when grown on Fe‐deficient media compared to basal MGRL solid medium. iTRAQ‐OFFGEL approach identified 909 differentially expressed proteins common to all three biological replicates; the majority were transporters or proteins involved in photosynthesis, and ribosomal proteins. Interestingly, protein expression changes between excess Zn and Fe deficiency showed similar pattern. Further, the changes due to excess Zn were dramatically restored by the addition of Fe. To obtain biological insight into Zn and Fe cross‐talk, we focused on transporters, where STP4 and STP13 sugar transporters were predominantly expressed and responsive to Fe‐deficient conditions. Plants grown on Fe‐deficient conditions showed significantly increased level of sugars. These results suggest that Fe deficiency might lead to the disruption of sugar synthesis and utilization.  相似文献   
50.
To promote the functional restoration of the nervous system following injury, it is necessary to provide optimal extracellular signals that can induce neuronal regenerative activities, particularly neurite formation. This study aimed to examine the regulation of neuritogenesis by temperature-controlled repeated thermal stimulation (TRTS) in rat PC12 pheochromocytoma cells, which can be induced by neurotrophic factors to differentiate into neuron-like cells with elongated neurites. A heating plate was used to apply thermal stimulation, and the correlation of culture medium temperature with varying surface temperature of the heating plate was monitored. Plated PC12 cells were exposed to TRTS at two different temperatures via heating plate (preset surface temperature of the heating plate, 39.5°C or 42°C) in growth or differentiating medium for up to 18 h per day. We then measured the extent of growth, neuritogenesis, or acetylcholine esterase (AChE) activity (a neuronal marker). To analyze the mechanisms underlying the effects of TRTS on these cells, we examined changes in intracellular signaling using the following: tropomyosin-related kinase A inhibitor GW441756; p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580; and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126 with its inactive analog, U0124, as a control. While a TRTS of 39.5°C did not decrease the growth rate of cells in the cell growth assay, it did increase the number of neurite-bearing PC12 cells and AChE activity without the addition of other neuritogenesis inducers. Furthermore, U0126, and SB203580, but not U0124 and GW441756, considerably inhibited TRTS-induced neuritogenesis. These results suggest that TRTS can induce neuritogenesis and that participation of both the ERK1/2 and p38 MAPK signaling pathways is required for TRTS-dependent neuritogenesis in PC12 cells. Thus, TRTS may be an effective technique for regenerative neuromedicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号