首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1352篇
  免费   70篇
  2022年   9篇
  2021年   12篇
  2020年   14篇
  2019年   11篇
  2018年   9篇
  2017年   17篇
  2016年   35篇
  2015年   45篇
  2014年   69篇
  2013年   92篇
  2012年   90篇
  2011年   101篇
  2010年   54篇
  2009年   37篇
  2008年   73篇
  2007年   62篇
  2006年   62篇
  2005年   57篇
  2004年   46篇
  2003年   69篇
  2002年   61篇
  2001年   31篇
  2000年   22篇
  1999年   40篇
  1998年   19篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   12篇
  1993年   11篇
  1992年   34篇
  1991年   18篇
  1990年   22篇
  1989年   19篇
  1988年   9篇
  1987年   12篇
  1986年   9篇
  1985年   13篇
  1984年   8篇
  1983年   17篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   12篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1969年   4篇
  1968年   4篇
排序方式: 共有1422条查询结果,搜索用时 31 毫秒
101.
Although the four polypeptides of blasticidin S (BS) deaminase (BSD) are packed rather tightly coordinated to the "structural and catalytic" zinc atom of each subunit, the C-terminal region of the enzyme was suggested to be somewhat molten and flexible [M. Kimura, S. Sekido, Y. Isogai, and I. Yamaguchi (2000) J. Biochem. 127, 955-963]. To understand roles of this flexible region, we constructed five C-terminal deletion variants of BSD (each successively deleted from the C-terminal end up to five residues) and analyzed their biochemical properties focusing on the structure and activity of the enzyme. BSD and all of the deletion mutants showed the unique rigid conformation (e.g., characterized by their stabilities in SDS solution) and high levels of resistance against protease digestions. Furthermore, both the wild-type and deletion apoenzymes exhibited similar physical properties in thermodynamic refolding into the stable tetramer conformation. However, these small C-terminal deletions exerted deleterious effects on the catalytic efficiency of the enzyme as indicated by their strongly reduced k(cat)/K(m) value. Judging from the altered kinetic parameters and unaltered structural properties of the deletion variants, these C-terminal residues appear to be directly involved in enzyme-substrate interaction. In this short flexible region, Tyr-126, Trp-128, and Gly-130 were the key residues. Most notably, removal of Gly-130 markedly increased K(m) for BS without affecting its k(cat) value. These results indicate that the flexible C-terminal region is important for catalytic function and that a single Gly residue at the C-terminal end of BSD contributes significantly in facilitating access of a substrate to the active site.  相似文献   
102.
Bombyx mori lysozyme (BmLZ), from the silkworm, is an insect lysozyme. BmLZ has considerable activity at low temperatures and low activation energies compared with those of hen egg white lysozyme (HEWLZ), according to measurements of the temperature dependencies of relative activity (lytic and glycol chitin) and the estimation of activation energies using the Arrhenius equation. Being so active at low temperatures and low activation energies is characteristic of psychrophilic (cold-adapted) enzymes. The three-dimensional structure of BmLZ has been determined by X-ray crystallography at 2.5 A resolution. The core structure of BmLZ is similar to that of c-type lysozymes. However, BmLZ shows some distinct differences in the two exposed loops and the C-terminal region. A detailed comparison of BmLZ and HEWLZ suggests structural rationalizations for the differences in the catalytic efficiency, stability, and mode of activity between these two lysozymes.  相似文献   
103.
This study presents breeding and pollination systems of Aristolochia maxima and A. inflata in a seasonal tropical forest of Panama. Aristolochia is the most diverse genus of Aristolochiaceae, with ~120 species distributed throughout the tropics and subtropics. All the Aristolochia species studied so far are pollinated by saprophagous flies of different families, which are presumably deceived by floral odor. Flowers of many species have trap-and-release mechanisms. The flowers attract and imprison pollinators during the female stage first day of flowering and release them after anther dehiscence. Pollination systems of A. maxima and A. inflata are different from those of other Aristolochia in lacking trap mechanisms. Furthermore, the pollinators oviposit in the flowers, and their larvae grow on the fallen, decaying flowers on the ground. Therefore, the plants have a mutualistic relationship with their pollinators. Self-compatible A. inflata is pollinated by Megaselia sakaiae (Phoridae, Diptera). The pollinator may be specialized to Aristolochia flowers, which is the only substrate for larval development. On the other hand, self-incompatible A. maxima is pollinated by Drosophila spp. (Drosophilidae, Diptera), which utilize Aristolochia flowers as a breeding site only occasionally. This pollination mutualism might have evolved from deceit pollination.  相似文献   
104.
105.
An arsenate-resistant mutant AR3 of Chlamydomonas reinhardtii is a recessive mutant generated by random insertional mutagenesis using the ARG7 gene. AR3 shows about 10-fold resistance against arsenate toxicity compared with the wild type. By using a flanking region of an inserted tag as a probe, we cloned the corresponding wild-type allele (PTB1) of a mutated gene, which could completely complement the arsenate-resistance phenotype of AR3. The size of PTB1 cDNA is about 6.0 kb and it encodes a putative protein comprising 1666 amino acid residues. This protein exhibits significant sequence similarity with the yeast Pho89 protein, which is known to be a Na(+)/Pi co-transporter, although the PTB1 protein carries an additional Gln- and Gly-rich large hydrophilic region in the middle of its primary structure. Analyses of arsenic accumulation and release revealed that PTB1-disrupted cells show arsenate resistance due to low arsenate uptake. These results suggest that the PTB1 protein is a factor involved in arsenate (or Pi) uptake. Kinetics of Pi uptake revealed that the activity of high-affinity Pi transport component in AR3 is more activated than that in the wild type.  相似文献   
106.
Alpha-ketol linolenic acid [KODA, 9,10-ketol-octadecadienoic acid, that is 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid] is a signal compound found in Lemna paucicostata after exposure to stress, such as drought, heat or osmotic stress. KODA reacts with catecholamines to generate products that strongly induce flowering, although KODA itself is inactive [Yokoyama et al. (2000) Plant Cell Physiol. 41: 110; Yamaguchi et al. (2001) Plant Cell Physiol. 42: 1201]. We examined the role of KODA in the flower-induction process of Pharbitis nil (violet). KODA was identified for the first time in seedlings of P. nil grown under a flower-inductive condition (16-h dark exposure), by means of LC-SIM and LC-MS/MS. In addition, the changes in endogenous KODA levels (evaluated after esterification of KODA with 9-anthryldiazomethane) during the flower-inductive phase in short day-induced cotyledons were closely related to flower induction. The KODA concentration sharply increased in seedlings during the last 2 h of a 16-h dark period, while the KODA level showed no significant elevation under continuous light. The increase of KODA level occurred in cotyledonal blades, but not in other parts (petiole, hypocotyls and shoot tip). When the 16-h dark period was interrupted with a 10-min light exposure at the 8th h, flower induction was blocked and KODA level also failed to increase. The degree of elevation of KODA concentration in response to 16-h dark exposure was the highest when the cotyledons had just unfolded, and gradually decreased in seedlings grown under continuous light for longer periods, reaching the basal level at the 3rd day after unfolding. Flower-inducing ability also decreased in a similar manner. These results suggest that KODA may be involved in flower induction in P. nil.  相似文献   
107.
Human proximal tubular (PT) epithelial cells were isolated from urine and monoclonally cultured as monolayers for 1 wk, after which they were subcultured between two layers of collagen gel, designated a "collagen gel sandwich." Under these culture conditions, PT cells formed three-dimensional tubular structures exhibiting distinct polarized cell morphology. Scanning and transmission electron microscopic studies showed that they bore numerous microvilli at the apical surface and that they closely contacted the collagen gel at the basal surface. These studies indicate that PT cells exfoliated in urine still exhibit the potential to proliferate and form organized structures mimicking in vivo tubules. Because of the current lack of useful culture systems for human tubular epithelial cells originating from kidney tissue, we suggest that this unique culture system using voided PT cells in urine could open up new avenues to study not only the mechanisms of morphogenesis but also the physiology of human PT cells.  相似文献   
108.
Some spices showed high inhibitory activity against ovalbumin permeation through Caco-2 cell monolayers. Pimentol from allspice, rosmarinic acid and luteolin-7-O-beta-glucuronide from thyme, quercetin-3-O-beta-glucuronide from coriander and rutin from tarragon were identified as the active principles. A structure-activity relationship study among the active isolates and their related compounds indicated that the presence of a catechol structure played an important role in the inhibitory activity of each compound.  相似文献   
109.
Conjugated eicosapentaenoic acid (CEPA) and conjugated docosahexaenoic acid (CDHA) with triene structure, isomerized by alkaline treatment, showed intensive cytotoxicity with LD(50) at 12 and 16 microM, respectively, in DLD-1 cells (colorectal adenocarcinoma), while they had no effect on normal human fibroblast cell lines such as MRC-5, TIG-103, and KMS-6 cells. Cytotoxic action of CEPA and CDHA was also demonstrated in other tumor cell lines including HepG2, A549, MCF-7, and MKN-7 cells. alpha-Tocopherol suppressed cytotoxicity of CEPA and CDHA in tumor cells, and the cytotoxicity involved membrane phospholipid peroxidation. CEPA and CDHA induced DNA condensation and fragmentation in DLD-1 cells, indicating the involvement of apoptosis in this cytotoxic mechanism. Furthermore, previous reports have shown that lipid peroxidation product induces cell death, including apoptotic cell death in different cell lines. CEPA and CDHA have been demonstrated in cultured cells to cause cell death via lipid peroxidation and apoptosis in the absence of alpha-tocopherol.  相似文献   
110.
Asai A  Miyazawa T 《Life sciences》2000,67(23):2785-2793
Curcuminoids, curcumin and its structurally related compounds, constitute the phenolic yellowish pigment of turmeric. We investigated the absorption and metabolism of orally administered curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) in rats. HPLC and LC-MS analyses after enzymatic hydrolyses showed that the predominant metabolites in plasma following administration were glucuronides and glucuronide/sulfates (conjugates with both glucuronide and sulfate) of curcuminoids. The plasma concentrations of conjugated curcuminoids reached a maximum one hour after administration. The conjugative enzyme activities for glucuronidation and sulfation of curcumin were found in liver, kidney and intestinal mucosa. These results indicate that orally administered curcuminoids are absorbed from the alimentary tract and present in the general blood circulation after largely being metabolized to the form of glucuronide and glucuronide/sulfate conjugates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号