首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   13篇
  158篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   8篇
  2013年   24篇
  2012年   4篇
  2011年   8篇
  2009年   2篇
  2008年   9篇
  2007年   6篇
  2006年   1篇
  2005年   12篇
  2004年   5篇
  2003年   4篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   4篇
  1991年   8篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1969年   3篇
  1967年   1篇
排序方式: 共有158条查询结果,搜索用时 0 毫秒
71.
The innate immune system is the first line of defense against pathogenic microorganisms, such as bacteria, fungi, and viruses. Phagocytes, such as neutrophils and macrophages, play an important role in the innate immune system by recognizing, engulfing, and eliminating pathogens. It has been suggested that lipid membrane microdomains/rafts of phagocytes are involved in these innate immune responses, including superoxide generation, cell migration, and phagocytosis. Lactosylceramide (LacCer), a neutral glycosphingolipid, forms glycosphingolipid-enriched microdomains together with the Src family kinase, Lyn, on the neutrophil plasma membrane. LacCer-enriched microdomains have been suggested to play important roles in innate immune function of neutrophils. However, the molecular mechanisms underlying these phenomena remain largely unknown. Recent proteomic analyses of microdomains from phagocytes have provided insight into membrane microdomain-mediated functions in the processes of phagocytosis. In this review, we discuss the membrane microdomain-associated immune functions of phagocytes, focusing on those functions of LacCer-enriched microdomains and recent proteomic approaches to determine the molecular mechanisms underlying these functions.  相似文献   
72.
An isotope labeling scheme is described in which specific protonation of methine and methyl protons of leucine and valine is obtained on a 15N/13C labeled background with uniform deuteration of all other non-exchangeable protons. The presence of a protonated methine group has little effect on the favorable relaxation properties of the methyl protons of Leu and Val. This labeling scheme permits the rotameric state of leucine side-chains to be readily determined by simple inspection of the pattern of Hγ(i)–HN(i) and Hγ(i)–HN(i+1) NOEs in a 3D 15N-separated NOE spectrum free of complications arising from spectral overlap and spin-diffusion. In addition, one-bond residual dipolar couplings for the methine 13C–1H bond vectors of Leu and Val can be accurately determined from an intensity J-modulated constant-time HCCH-COSY experiment and used to accurately orient the side-chains of Leu and Val. Incorporation of these data into structure refinement improves the accuracy with which the conformations of Leu and Val side-chains can be established. This is important to ensure optimal packing both within the protein core and at intermolecular interfaces. The impact of the method on protein structure determination is illustrated by application to enzyme IIAChitobiose, a 34 kDa homotrimeric phosphotransferase protein.  相似文献   
73.
The hyaluronic acid receptor, CD44, exists as multiple splice variants that appear to have a role in migration of tumor cells. The role of this receptor and its variants in normal wound repair is poorly understood. A central feature of wound repair in the liver is activation and migration of perisinusoidal stellate cells. We have examined CD44 expression by stellate cells from normal or injured rat liver, finding that it increases with injury and involves a distinct set of CD44 splice variants. Among the latter, variants containing the v6 exon (CD44v6) are strikingly increased. Analysis of migration of primary cells on transwell filter inserts reveals that only cells isolated from injured liver are migratory. Also, they move more rapidly on hyaluronic acid than on collagen I or collagen IV. A polyclonal antibody to recombinant CD44v6 blocks migration by 50%, whereas antibody to CD44v4 has no effect. The inhibition is specific for cells migrating on hyaluronic acid and is reversed by synthetic peptide representing the N terminus of the v6 protein. In conclusion, activated stellate cells use CD44v6 and hyaluronic acid for migration. Given the evidence that migration is required for progression of injury with scar formation, blockers of CD44v6 expression or function are candidates for preventing the deleterious effects of chronic fibrosis.  相似文献   
74.
Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. Structure-based designs of the P3 moiety in the peptide mimetic factor VIIa inhibitor successfully lead to novel inhibitors with selectivity for FVIIa/TF and extrinsic coagulation the same as or even higher than those of previously reported peptide mimetic factor VIIa inhibitors. X-ray crystal structure analysis reveals that one of the novel inhibitors shows improved selectivity by forming interactions between the inhibitor and FVIIa as expected. Another of the novel inhibitors achieves improved selectivity through an unexpected hydrogen bond with Gln217, with a unique bent conformation in FVIIa/TF accompanied by conformational changes of the inhibitor and the protein.  相似文献   
75.
Cell migration is a well organized process regulated by the extracellular matrix-mediated cytoskeletal reorganization. The signaling adaptor protein Crk has been shown to regulate cell motility, but its precise role is still under investigation. Herein, we report that Crk associates with ERM family proteins (including ezrin, radixin, and moesin), activates RhoA, and promotes cell motility toward hyaluronic acid. The binding of Crk with ERMs was demonstrated both by transient and stable protein expression systems in 293T cells and 3Y1 cells, and it was shown that v-Crk translocated the phosphorylated form of ERMs to microvilli in 3Y1 cells by immunofluorescence and immunoelectron microscopy. This v-Crk-dependent formation of microvilli was suppressed by inhibitors of Rho-associated kinase, and the activity of RhoA was elevated by coexpression of c-Crk-II and ERMs in 3Y1 cells. In concert with the activation of RhoA by Crk, Crk was found to associate with Rho-GDI, which has been shown to bind to ERMs. Furthermore, upon hyaluronic acid treatment, coexpression of c-Crk-II and ERMs enhanced cell motility, whereas the sole expression of c-Crk-II or either of the ERMs decreased the motility of 3Y1 cells. These results suggest that Crk may be involved in regulation of cell motility by a hyaluronic acid-dependent mechanism through an association with ERMs.  相似文献   
76.
Arthrobacter protophormiae produced a high level of extracellular endo-β-N-acetylglucosaminidase when cells were grown in a medium containing ovalbumin. The enzyme was induced by the glycopeptide fraction of ovalbumin prepared by pronase digestion. Production of the enzyme was also induced by glycoproteins such as yeast invertase and bovine ribonuclease B but not by monosaccharides such as mannose, N-acetylglucosamine, and galactose. The enzyme was purified to homogeneity as demonstrated by polyacrylamide gel electrophoresis and has an apparent molecular weight of about 80,000. The enzyme showed a broad optimum pH in the range of pH 5.0 to 11.0. The enzyme hydrolyzed all heterogeneous ovalbumin glycopeptides, although the hydrolysis rates for hybrid type glycopeptides were very low. The substrate specificity of A. protophormiae endo-β-N-acetylglucosaminidase was very similar to that of Endo-CII from Clostridium perfringens. Therefore, the enzyme induction by A. protophormiae seems to have a close relation to the substrate specificity of the enzyme.  相似文献   
77.
The transglycosylation activity of endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae was used for the enzymatic synthesis of novel oligosaccharides. When (Man)6(GlcNAc)2Asn was used as a substrate for the transglycosylation, (Man)6GlcNAc-Glc, (Man)6GlcNAc-Man, (Man)6GlcNAc-chitobiose, and (Man)6GlcNAc-gentiobiose were synthesized. Their structures were identified by HPLC, ion spray mass spectrometry, and digestion with glycosidases. Endo-beta-N-acetylglucosaminidases hydrolyzed the pyridylamino derivatives of these oligosaccharides.  相似文献   
78.
79.
80.
A biotinless mutant (K-681-UV-134) accumulated a large amount of desthiobiotin and an unknown biotin-vitamer in the culture medium.

The parent strain (K-681) of this mutant isolated from soil was identified as Bacillus cereus.

The unknown vitamer was accumulated at the early stage of the incubation in comparison with desthiobiotin.

The unknown vitamer was purified by the paper- and column-chromatographic methods from the culture filtrate. The purified vitamer gave a single spot when spraying with the ninhydrin reagent after paper chromatographing and its RF values in several solvent systems were identical with those of authentic 7-keto-8-aminopelargonic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号