首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1996篇
  免费   96篇
  国内免费   2篇
  2094篇
  2022年   10篇
  2021年   23篇
  2020年   13篇
  2019年   13篇
  2018年   20篇
  2017年   12篇
  2016年   49篇
  2015年   61篇
  2014年   79篇
  2013年   139篇
  2012年   100篇
  2011年   94篇
  2010年   64篇
  2009年   63篇
  2008年   106篇
  2007年   101篇
  2006年   108篇
  2005年   90篇
  2004年   95篇
  2003年   94篇
  2002年   107篇
  2001年   39篇
  2000年   46篇
  1999年   40篇
  1998年   29篇
  1997年   20篇
  1996年   20篇
  1995年   27篇
  1994年   20篇
  1993年   20篇
  1992年   30篇
  1991年   28篇
  1990年   28篇
  1989年   29篇
  1988年   17篇
  1987年   19篇
  1986年   13篇
  1985年   18篇
  1984年   11篇
  1983年   16篇
  1982年   13篇
  1981年   25篇
  1980年   21篇
  1979年   13篇
  1978年   15篇
  1977年   12篇
  1976年   13篇
  1975年   16篇
  1974年   14篇
  1973年   10篇
排序方式: 共有2094条查询结果,搜索用时 0 毫秒
171.
172.
The interaction of saponins with phospholipid vesicles was investigated by means of liposomal agglutination or a precipitation assay. Ginsenoside-Rc, which has an α-l-arabinofuranose residue at the non-reducing terminus, exhibited remarkable agglutinability toward egg yolk phosphatidylcholine vesicles, while other saponins lacking this characteristic sugar residue showed less or no agglutinability. The molar ratio of ginsenoside-Rc to egg phosphatidylcholine in the aggregates was estimated to be 0.4–0.5 by a precipitation assay using 14C-labeled egg phosphatidylcholine vesicles. The agglutination was inhibited by p-nitrophenyl α-l-arabinofuranoside but not by p-nitrophenyl β-d-glucopyranoside or arabinogalactan. The results indicated that the α-l-arabinofuranose residue in ginsenoside-Rc should be important for the expression of the agglutinability. The agglutinability of ginsenoside-Rc toward lipid vesicles depended on both the polar head groups and fatty acyl chains of phospholipids. Egg yolk phosphatidylcholine vesicles were strongly agglutinated by ginsenoside-Rc, although sphingomyelin, phosphatidylethanolamine, phosphatidic acid and phosphatidylserine were less agglutinated. The agglutinability of ginsenoside-Rc was effective for phosphatidylcholines with short or unsaturated fatty acyl chains. The results suggested that the interaction of ginsenoside-Rc with phospholipid membranes should be affected not only by the chemical structure of the phospholipid but also by the membrane fluidity.  相似文献   
173.
The neurogenic gene Drosophilabig brain (bib) has a high sequence homology to aquaporin-4. However, its cellular functions in Drosophila neurogenesis have remained elusive. Here we investigated cell adhesion, and the ion and water permeability of Bib. The adhesive function was examined by a cell aggregation assay using L cells. Bib-transfected L cells formed aggregated clusters, while control-L cells remained as a single cell suspension. Ion permeation was not confirmed in L cells stably expressing Bib. When expressed in COS7 cells, Bib exhibited limited water permeability. This newly found cell adhesive function of Bib may be important for Drosophila neurogenesis.  相似文献   
174.
175.
An endo β-1,4-xylanase (XynE15) from a culture broth of a deep subseafloor microorganism, Microcella alkaliphila JAM-AC0309, was purified to homogeneity. The molecular mass of XynE15 was approximately 150 kDa as judged by SDS-PAGE. The optimal pH and temperature for hydrolysis of xylan were pH 8 and 65 °C. The enzyme was stable to incubation for 30 min at up to 75 °C, and the half-life at 50 °C was 48 h. XynE15 hydrolyzed arabinoxylan, oat spelt xylan, and birchwood xylan well, but not avicel, carboxymethylcellulose, or arabinan. Xylooligosaccharides were hydrolyzed to mainly xylobiose from higher than xylotetraose. The genome sequencing analysis of strain JAM-AC03039 revealed that XynE15 was composed of 1,319 amino acids with one catalytic domain and three carbohydrate-binding domains belonging to glycoside hydrolase (GH) family 10 and carbohydrate-binding module (CBM) family 4, respectively.  相似文献   
176.
Higher-order structures of nucleic acids have become widely noted for their biological consequences and the discovery of an alkylating small molecule for these structures has been of interest due to its therapeutic potential. We previously developed the vinyldiaminotriazine (VDAT)-acridine conjugate as a T-T mismatch alkylating agent. In this report, we focused on the finding of the alkylation to the G-quadruplex (G4) DNA with VDAT-acridine conjugates. The VDAT-acridine conjugates exhibited a considerable alkylation ability to G4 under mild conditions. Moreover, the investigation of properties with the alkylated G4 revealed that alkylation by this conjugate significantly increased the stability of the G4 structure. This study provides a starting point in the further development of selective G4 alkylating small molecules.  相似文献   
177.
178.
179.
The gobiid fish Trimma okinawae changes its sex bi-directionally according to its social status. Morphological changes in the urinogenital papillae (UGP) of this fish have been reported during sex change. However, there have been no detailed observations of such changes. Here, we histologically examined the UGP structure of male- and female-phase fish. UGPs of fish in female and male phase contained both oviducts and sperm ducts. Both ducts were coalesced into one duct within the posterior region of the UGP. Female-phase fish had many longitudinal folds in the hypertrophied tunica mucosa of the oviduct, which was found to be responsible for the transport of eggs and the removal of follicular cells from the oocyte. In contrast, male-phase fish had an immature oviduct and a mature sperm duct in the UGP. In the male-phase fish, the co-existence of spermatozoa and fibrillar secretions was observed in the sperm duct during spermiation.  相似文献   
180.
E6‐associated protein (E6AP) is a cellular ubiquitin protein ligase that mediates ubiquitylation and degradation of tumor suppressor p53 in conjunction with the high‐risk human papillomavirus E6 protein. We previously reported that E6AP targets annexin A1 protein for ubiquitin‐dependent proteasomal degradation. To gain a better understanding of the physiological function of E6AP, we have been seeking to identify novel substrates of E6AP. Here, we identified peroxiredoxin 1 (Prx1) as a novel E6AP‐binding protein using a tandem affinity purification procedure coupled with mass spectrometry. Prx1 is a 25‐kDa member of the Prx family, a ubiquitous family of antioxidant peroxidases that regulate many cellular processes through intracellular oxidative signal transduction pathways. Immunoprecipitation analysis showed that E6AP binds Prx1 in vivo. Pull‐down experiments showed that E6AP binds Prx1 in vitro. Ectopic expression of E6AP enhanced the degradation of Prx1 in vivo. In vivo and in vitro ubiquitylation assays revealed that E6AP promoted polyubiquitylation of Prx1. RNAi‐mediated downregulation of endogenous E6AP increased the level of endogenous Prx1 protein. Taken together, our data suggest that E6AP mediates the ubiquitin‐dependent proteasomal degradation of Prx1. Our findings raise a possibility that E6AP may play a role in regulating Prx1‐dependent intracellular oxidative signal transduction pathways. J. Cell. Biochem. 111: 676–685, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号