首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   84篇
  国内免费   2篇
  1854篇
  2022年   9篇
  2021年   19篇
  2020年   11篇
  2019年   13篇
  2018年   18篇
  2017年   13篇
  2016年   46篇
  2015年   51篇
  2014年   66篇
  2013年   143篇
  2012年   89篇
  2011年   83篇
  2010年   59篇
  2009年   60篇
  2008年   94篇
  2007年   90篇
  2006年   96篇
  2005年   80篇
  2004年   88篇
  2003年   82篇
  2002年   96篇
  2001年   22篇
  2000年   35篇
  1999年   27篇
  1998年   27篇
  1997年   18篇
  1996年   17篇
  1995年   23篇
  1994年   20篇
  1993年   18篇
  1992年   26篇
  1991年   25篇
  1990年   29篇
  1989年   27篇
  1988年   17篇
  1987年   18篇
  1986年   14篇
  1985年   15篇
  1984年   10篇
  1983年   16篇
  1982年   11篇
  1981年   22篇
  1980年   19篇
  1979年   11篇
  1978年   11篇
  1977年   10篇
  1976年   12篇
  1975年   10篇
  1974年   12篇
  1973年   6篇
排序方式: 共有1854条查询结果,搜索用时 10 毫秒
271.
Activating mutations in the genes for fibroblast growth factor receptors 1-3 (FGFR1-3) are responsible for a diverse group of skeletal disorders. In general, mutations in FGFR1 and FGFR2 cause the majority of syndromes involving craniosynostosis, whereas the dwarfing syndromes are largely associated with FGFR3 mutations. Osteoglophonic dysplasia (OD) is a "crossover" disorder that has skeletal phenotypes associated with FGFR1, FGFR2, and FGFR3 mutations. Indeed, patients with OD present with craniosynostosis, prominent supraorbital ridge, and depressed nasal bridge, as well as the rhizomelic dwarfism and nonossifying bone lesions that are characteristic of the disorder. We demonstrate here that OD is caused by missense mutations in highly conserved residues comprising the ligand-binding and transmembrane domains of FGFR1, thus defining novel roles for this receptor as a negative regulator of long-bone growth.  相似文献   
272.
Ueki S  Nakamura M  Komori T  Arata T 《Biochemistry》2005,44(1):411-416
Calcium-induced structural transition in the amino-terminal domain of troponin C (TnC) triggers skeletal and cardiac muscle contraction. The salient feature of this structural transition is the movement of the B and C helices, which is termed the "opening" of the N-domain. This movement exposes a hydrophobic region, allowing interaction with the regulatory domain of troponin I (TnI) as can be seen in the crystal structure of the troponin ternary complex [Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y. (2003) Nature 424, 35-41]. In contrast to skeletal TnC, Ca(2+)-binding site I (an EF-hand motif that consists of an A helix-loop-B helix motif) is inactive in cardiac TnC. The question arising from comparisons with skeletal TnC is how both helices move according to Ca(2+) binding or interact with TnI in cardiac TnC. In this study, we examined the Ca(2+)-induced movement of the B and C helices relative to the D helix in a cardiac TnC monomer state and TnC-TnI binary complex by means of site-directed spin labeling electron paramagnetic resonance (EPR). Doubly spin-labeled TnC mutants were prepared, and the spin-spin distances were estimated by analyzing dipolar interactions with the Fourier deconvolution method. An interspin distance of 18.4 A was estimated for mutants spin labeled at G42C on the B helix and C84 on the D helix in a Mg(2+)-saturated monomer state. The interspin distance between Q58C on the C helix and C84 on the D helix was estimated to be 18.3 A under the same conditions. Distance changes were observed by the addition of Ca(2+) ions and the formation of a complex with TnI. Our data indicated that the C helix moved away from the D helix in a distinct Ca(2+)-dependent manner, while the B helix did not. A movement of the B helix by interaction with TnI was observed. Both Ca(2+) and TnI were also shown to be essential for the full opening of the N-domain in cardiac TnC.  相似文献   
273.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   
274.
275.
Renal tubulointerstitial fibrosis is the common final pathway leading to end-stage renal failure. Tubulointerstitial fibrosis is characterized by fibroblast proliferation and excessive matrix accumulation. Transforming growth factor-beta1 (TGF-beta1) has been implicated in the development of renal fibrosis accompanied by alpha-smooth muscle actin (alpha-SMA) expression in renal fibroblasts. To investigate the molecular and cellular mechanisms involved in tubulointerstitial fibrosis, we examined the effect of TGF-beta1 on collagen type I (collagen) gel contraction, an in vitro model of scar collagen remodeling. TGF-beta1 enhanced collagen gel contraction by human renal fibroblasts in a dose- and time-dependent manner. Function-blocking anti-alpha1 or anti-alpha2 integrin subunit antibodies significantly suppressed TGF-beta1-stimulated collagen gel contraction. Scanning electron microscopy showed that TGF-beta1 enhanced the formation of the collagen fibrils by cell attachment to collagen via alpha1beta1 and alpha2beta1 integrins. Flow cytometry and cell adhesion analyses revealed that the stimulation of renal fibroblasts with TGF-beta1 enhanced cell adhesion to collagen via the increased expression of alpha1 and alpha2 integrin subunits within collagen gels. Fibroblast migration to collagen was not up-regulated by TGF-beta1. Furthermore, TGF-beta1 increased the expression of a putative contractile protein, alpha-SMA, by human renal fibroblasts in collagen gels. These results suggest that TGF-beta1 stimulates fibroblast-collagen matrix remodeling by increasing both integrin-mediated cell attachment to collagen and alpha-SMA expression, thereby contributing to pathological tubulointerstitial collagen matrix reorganization in renal fibrosis.  相似文献   
276.
In order for axons to reach their proper targets, both spatiotemporal regulation of guidance molecules and stepwise control of growth cone sensitivity to guidance molecules is required. Here, we show that, in zebrafish, Sema3a1, a secreted class 3 semaphorin, plays an essential role in guiding the caudal primary (CaP) motor axon that pioneers the initial region of the motor pathway. The expression pattern of Sema3a1 suggests that it delimits the pioneer CaP axons to the initial, common pathway via a repulsive action, but then CaP axons become insensitive to Sema3a1 beyond the common pathway. Indeed, nrp1a, which probably encodes a component of the Sema3a1 receptor, is specifically expressed by CaP during the early part of its outgrowth but not during later stages when extending into sema3a1-expressing muscle cells. To examine this hypothesis directly, expression of sema3a1 and/or nrp1a was manipulated in several ways. First, antisense knockdown of Sema3a1 induced CaP axons to branch excessively, stall and/or follow aberrant pathways. Furthermore, dynamic analysis showed they extended more lateral filopodia and often failed to pause at the horizontal myoseptal choice point. Second, antisense knockdown of Nrp1a and double knockdown of Nrp1a/Sema3a1 induced similar outgrowth defects in CaP. Third, CaP axons were inhibited by focally misexpressed sema3a1 along the initial common pathway but not along their pathway beyond the common pathway. Thus, as predicted, Sema3a1 is repulsive to CaP axons in the common region of the pathway, but not beyond the common pathway. Fourth, induced ubiquitous overexpression of sema3a1 caused the CaP axons but not the other primary motor axons to follow aberrant pathways. These results suggest that the repulsive response to Sema3a1 of the primary motor axons along the common pathway is both cell-type specific and dynamically regulated, perhaps via regulation of nrp1a.  相似文献   
277.
278.
The display of a protease, carboxypeptidase Y (CPY) or procarboxypeptidase Y (proCPY), which is the vacuolar protease, on the yeast-cell surface was successfully performed using yeast-cell-surface engineering for the first time. Through that we could confirm the processing of vacuolar proteases containing proteinase A (PrA) and proteinase B (PrB) which are related to the maturation of proCPY, using a novel cell-surface engineering technique. Various protease-knockout strains of Saccharomyces cerevisiae with the CPY-displaying system were constructed to evaluate the operation of the activation process of CPY. The display of CPY (CPY-agg, which is a fusion protein of CPY with C-terminal half of α-agglutinin) on the cell surface was confirmed by immunofluorescence staining. The activity of the CPY-agg was determined after the conversion of proCPY to active CPY by treatment of whole cells with proteinase K. In the proCPY-displaying CPY-knockout strain and PrB-knockout strain, CPY was displayed as an active (mature) form, but in the proCPY-displaying PrA-knockout strain, CPY was present as an inactive form (proCPY). These facts indicate that PrA had been already activated before its transport to the vacuole and that active mature PrA might convert proCPY to CPY before the transport of proCPY to the vacuole. From these results, it was suggested that by using the yeast-cell-surface engineering at the location of the initial step, the autocatalytic activation from proPrA to PrA might occur before the vacuolar branch separates from the main secretory pathway.  相似文献   
279.
LolA, a periplasmic chaperone, binds to outer membrane-specific lipoproteins released from the inner membrane through the action of an ATP-binding cassette transporter, LolCDE and then transfers them to the outer membrane receptor LolB, thereby mediating the inner to outer membrane transport of lipoproteins. The crystal structure of free LolA revealed that it has an internal hydrophobic cavity, which is surrounded by hydrophobic residues and closed by a lid comprising alpha-helices. The hydrophobic cavity most likely represents the binding site for the lipid moiety of a lipoprotein. It is speculated that the lid undergoes opening and closing upon the binding and transfer of lipoproteins, respectively. To determine the functions of the hydrophobic cavity and lid in detail, 14 residues involved in the formation of these structures were subjected to random mutagenesis. Among the obtained 21 LolA derivatives that did not support growth, 14 were active as to the binding of lipoproteins but defective in the transfer of lipoproteins to LolB, causing the periplasmic accumulation of a lipoprotein as a complex with a LolA derivative. A LolA derivative, I93G, bound lipoproteins faster than wild-type LolA did, whereas it did not transfer associated lipoproteins to LolB. When I93G and wild type LolA co-existed, lipoproteins were bound only to I93G; which therefore exhibited a dominant negative property. Another derivative, L59R, was also defective in the transfer of lipoproteins to LolB but did not exhibit a dominant negative property. Taken together, these results indicate that both the hydrophobic cavity and the lid are critically important for not only the binding of lipoproteins but also their transfer.  相似文献   
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号