首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   19篇
  国内免费   1篇
  2021年   3篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   10篇
  2015年   23篇
  2014年   9篇
  2013年   44篇
  2012年   22篇
  2011年   20篇
  2010年   18篇
  2009年   20篇
  2008年   27篇
  2007年   18篇
  2006年   24篇
  2005年   27篇
  2004年   35篇
  2003年   28篇
  2002年   20篇
  2001年   3篇
  1999年   13篇
  1998年   12篇
  1997年   8篇
  1996年   3篇
  1995年   8篇
  1994年   10篇
  1993年   12篇
  1992年   6篇
  1991年   7篇
  1990年   7篇
  1989年   5篇
  1988年   7篇
  1987年   7篇
  1986年   16篇
  1985年   5篇
  1984年   5篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1976年   7篇
  1975年   4篇
  1973年   4篇
  1969年   2篇
  1967年   2篇
  1965年   2篇
  1963年   3篇
  1957年   2篇
排序方式: 共有571条查询结果,搜索用时 31 毫秒
101.
To investigate exercise-induced regional metabolic and perfusion changes in the human brain, various methods are available, such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), near-infrared spectroscopy (NIRS) and electroencephalography (EEG). In this paper, details of methods of metabolic measurement using PET, [18F]fluorodeoxyglucose ([18F]FDG) and [15O]radio-labelled water ([15O]H2O) will be explained.Functional neuroimaging in the field of neuroscience was started in the 1970s using an autoradiography technique on experimental animals. The first human functional neuroimaging exercise study was conducted in 1987 using a rough measurement system known as 133Xe inhalation. Although the data was useful, more detailed and exact functional neuroimaging, especially with respect to spatial resolution, was achieved by positron emission tomography. Early studies measured the cerebral blood flow changes during exercise. Recently, PET was made more applicable to exercise physiology and psychology by the use of the tracer [18F]FDG. This technique allowed subjects to be scanned after an exercise task is completed but still obtain data from the exercise itself, which is similar to autoradiography studies.In this report, methodological information is provided with respect to the recommended protocol design, the selection of the scanning mode, how to evaluate the cerebral glucose metabolism and how to interpret the regional brain activity using voxel-by-voxel analysis and regions of interest techniques (ROI).Considering the important role of exercise in health promotion, further efforts in this line of research should be encouraged in order to better understand health behavior. Although the number of research papers is still limited, recent work has indicated that the [18F]FDG-PET technique is a useful tool to understand brain activity during exercise.  相似文献   
102.
Oxidative stress, an imbalance between endogenous levels of oxygen radicals and antioxidative defense, increases with aging. However, it is not clear which of these two factors is the more critical. To clarify the production of oxygen radicals increases with age, we examined oxygen radical-dependent chemiluminescent signals in ex vivo brain slices using a novel photonic imaging method. The chemiluminescent intensity was significantly decreased by the membrane permeable superoxide dismutase (SOD)/catalase mimic, but not by Cu,Zn-SOD. Inhibitors for complex I, III, and IV of the mitochondrial electron transport chain transiently enhanced the chemiluminescent signal. The superoxide-dependent chemiluminescent intensity in senescence accelerated mouse (SAM) brain tissues increases with age. Moreover, the slope of the age-dependent increase was steeper in SAMP10, a strain characterized by a short lifespan and atrophy in the frontal cerebral cortex, than the senescence-resistant strain SAMR1, which has a longer lifespan. An increase in chemiluminescence with age was also observed in C57/BL6 mice, Wistar rats, and pigeons, although levels of chemiluminescence were lower in the pigeons than murines. The rate of age-related increases of superoxide-dependent chemiluminescence was inversely related to the maximum lifespan of the animals. The activity of superoxide dismutase was unchanged during the aging process in the brain. This suggested that superoxide production itself may increase with age. We speculated that reactive oxygen may be a signal to determine the aging process.  相似文献   
103.
AimsOxytocin (OT) is the strongest uterotonic substance and has been used widely to induce labor. The physiological importance of OT in modulating the initiation and progression of labor remains unclear. In this study, we showed the roles of OT with onset of labor and also the arginine vasopressin (AVP) effect on urine volume in vivo using both wild type (WT) and placental leucine aminopeptidase (P-LAP)-deficient (KO) mice.Main methodsOT (1, 2, 2.5 U/day) or recombinant P-LAP (0.01 U/day) was continuously infused from gestation day 15.5 in WT and P-LAP KO mice. Duration until onset of labor was observed. Before and after administration of AVP (1 U/day) in WT and P-LAP KO mice, urine volume was measured.Key findingsA significant shortening of pregnancy term was observed in P-LAP KO mice. Continuous infusion of OT (1 U/day) revealed that P-LAP KO mice resulted in premature delivery (OT hypersensitivity). We could observe a significant decrease of urine volume in P-LAP KO mice by administration of AVP. Administration of recombinant P-LAP in WT mice resulted in the delay of the onset of labor about 1.5 days compared with control mice.SignificanceOur present study shows that the regulation of the onset of labor mainly depends on OT and its degradation by P-LAP and also the possible role of P-LAP in the regulation of urine output. P-LAP might be involved in the increased OT sensitivity just prior to onset of labor and also in the onset of labor by degradation of OT.  相似文献   
104.
Conformationally restricted 3-anilino-4-(3-indolyl)maleimide derivatives were designed and synthesized aiming at discovery of novel protein kinase Cbeta (PKCbeta)-selective inhibitors possessing oral bioavailability. Among them, compounds having a fused five-membered ring at the indole 1,2-position inhibited PKCbeta2 with IC50 of nM-order and showed good oral bioavailability. One of the most potent compounds was found to be PKCbeta-selective over other 6 isozymes and exhibited ameliorative effects in a rat diabetic retinopathy model via oral route.  相似文献   
105.
In order to generate novel compounds with integrin alpha(v)beta3-antagonistic activity together with antiplatelet activity, tricyclic pharmacophore-based molecules were designed and synthesized. Although piperazine-containing compounds initially prepared were selective alpha(IIb)beta3 antagonists, replacement of piperazine with piperidine furnished a potent alpha(v)beta3/alpha(IIb)beta3 dual antagonist. Structure-activity relationship (SAR) studies provided clues for further development of tricyclic pharmacophore-based integrin antagonists.  相似文献   
106.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is a dually functional protein, acting both as a PGD2-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. L-PGDS is expressed in oligodendrocytes (OLs) in the central nervous system and is up-regulated in OLs of the twitcher mouse, a model of globoid cell leukodystrophy (Krabbe's disease). We investigated whether up-regulation of L-PGDS is either unique to Krabbe's disease or is a more generalized phenomenon in lysosomal storage disorders (LSDs), using LSD mouse models of Tay-Sachs disease, Sandhoff disease, GM1 gangliosidosis and Niemann-Pick type C1 disease. Quantitative RT-PCR revealed that L-PGDS mRNA was up-regulated in the brains of all these mouse models. In addition, strong L-PGDS immunoreactivity was observed in OLs, but not in either astrocytes or microglia in these models. Thus, up-regulation of L-PGDS appears to be a common response of OLs in LSDs. Moreover, surface plasmon resonance analyses revealed that L-PGDS binds GM1 and GM2 gangliosides, accumulated in neurons in the course of LSD, with high affinities (KD = 65 and 210 nm, respectively). This suggests that L-PGDS may play a role in scavenging harmful lipophilic substrates in LSD.  相似文献   
107.
Oxidative stress is closely linked to the pathogenesis of neurodegeneration. Soluble amyloid β (Aβ) oligomers cause cognitive impairment and synaptic dysfunction in Alzheimer disease (AD). However, the relationship between oligomers, oxidative stress, and their localization during disease progression is uncertain. Our previous study demonstrated that mice deficient in cytoplasmic copper/zinc superoxide dismutase (CuZn-SOD, SOD1) have features of drusen formation, a hallmark of age-related macular degeneration (Imamura, Y., Noda, S., Hashizume, K., Shinoda, K., Yamaguchi, M., Uchiyama, S., Shimizu, T., Mizushima, Y., Shirasawa, T., and Tsubota, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 11282-11287). Amyloid assembly has been implicated as a common mechanism of plaque and drusen formation. Here, we show that Sod1 deficiency in an amyloid precursor protein-overexpressing mouse model (AD mouse, Tg2576) accelerated Aβ oligomerization and memory impairment as compared with control AD mouse and that these phenomena were basically mediated by oxidative damage. The increased plaque and neuronal inflammation were accompanied by the generation of N(ε)-carboxymethyl lysine in advanced glycation end products, a rapid marker of oxidative damage, induced by Sod1 gene-dependent reduction. The Sod1 deletion also caused Tau phosphorylation and the lower levels of synaptophysin. Furthermore, the levels of SOD1 were significantly decreased in human AD patients rather than non-AD age-matched individuals, but mitochondrial SOD (Mn-SOD, SOD2) and extracellular SOD (CuZn-SOD, SOD3) were not. These findings suggest that cytoplasmic superoxide radical plays a critical role in the pathogenesis of AD. Activation of Sod1 may be a therapeutic strategy for the inhibition of AD progression.  相似文献   
108.
109.
We studied the transforming ability of the extracellular plasmid DNA released from a genetically engineered Escherichia coli pEGFP and the culturing conditions for the release of transforming DNA. The transforming ability was evaluated by transformation of competent cells with filtrates of E. coli pEGFP cultures. The number of transformants increased with time when E. coli pEGFP cells grew exponentially in rich medium, but not in stationary phase or when inoculated in freshwater. These results suggested that crude extracellular plasmid DNA had transforming ability and this transforming DNA was mainly released by actively growing bacteria.  相似文献   
110.
Lysophosphatidic acid (LPA) signaling is known to play biological and pathophysiological roles in many types of animals. Medaka (Oryzias latipes) is an experimental fish that can be easily maintained, propagated, and analyzed, and whose genome has been completely sequenced. However, there is limited information available regarding medaka LPA receptors. Here, using information from the medaka genome database, we examine the genomic structures, expression, and functions of six LPA receptor genes, Lpar1Lpar6. Our analyses reveal that the genomic structures of Lpar1 and Lpar4 are different from those deduced from the database. Functional analyses using a heterologous expression system demonstrate that all medaka LPA receptors except for LPA5b respond to LPA treatment with cytoskeletal changes. These findings provide useful information on the structure and function of medaka LPA receptor genes, and identify medaka as a useful experimental model for exploration of the biological significance of LPA signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号