首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   35篇
  2023年   3篇
  2022年   4篇
  2021年   20篇
  2020年   7篇
  2019年   8篇
  2018年   14篇
  2017年   14篇
  2016年   18篇
  2015年   26篇
  2014年   21篇
  2013年   39篇
  2012年   41篇
  2011年   30篇
  2010年   23篇
  2009年   18篇
  2008年   40篇
  2007年   33篇
  2006年   30篇
  2005年   18篇
  2004年   21篇
  2003年   28篇
  2002年   30篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1985年   1篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1972年   2篇
  1969年   1篇
排序方式: 共有560条查询结果,搜索用时 46 毫秒
61.
62.
We have analyzed the sma-5(n678) mutant in C. elegans to elucidate mechanisms controlling body size. The sma-5 mutant is very small, grows slowly and its intestinal granules look abnormal. We found a 15 kb deletion in the mutant that includes a 226 bp deletion of the 3' end of the W06B3.2-coding sequence. Based on this result, rescue experiments, RNAi experiments and a newly isolated deletion mutant of W06B3.2, we conclude that W06B3.2 is the sma-5 gene. The sma-5 mutant has much smaller intestine, body wall muscles and hypodermis than those of the wild type. However, the number of intestinal cells or body wall muscle cells is not changed, indicating that the sma-5 mutant has much smaller cells. In relation to the smaller cell size, the amount of total protein is drastically decreased; however, the DNA content of the intestinal nuclei is unchanged in the sma-5 mutant. The sma-5 gene is expressed in intestine, excretory cell and hypodermis, and encodes homologs of a mammalian MAP kinase BMK1/ERK5/MAPK7, which was reported to control cell cycle and cell proliferation. Expression of the sma-5 gene in hypodermis is important for body size control, and it can function both organ-autonomously and non-autonomously. We propose that the sma-5 gene functions in a MAP kinase pathway to regulate body size mainly through control of cell growth.  相似文献   
63.
Three diterpene compounds isolated from the anti-cancer herbal medicine kansui, namely, kansuinin B, 20-OD-ingenol Z, and 20-OD-ingenol E, specifically inhibited the proliferation of isolated embryonic cells from Xenopus embryos. We conducted a cytologic study to determine the mechanism underlying the arrest of the cellular proliferation by these compounds. While kansuinin B and 20-OD-ingenol Z treatment decreased the cell numbers in the S phase and the M phase substages of the cell cycle, 20-OD-ingenol E inhibited mitosis.  相似文献   
64.
Sphingomyelin (SM) synthase has been assumed to be involved in both cell death and survival by regulating pro-apoptotic mediator ceramide and pro-survival mediator diacylglycerol. However, its precise functions are ambiguous due to the lack of molecular cloning of SM synthase gene(s). We isolated WR19L/Fas-SM(-) mouse lymphoid cells, which show a defect of SM at the plasma membrane due to the lack of SM synthase activity and resistance to cell death induced by an SM-directed cytolytic protein lysenin. WR19L/Fas-SM(-) cells were also highly susceptible to methyl-beta-cyclodextrin (MbetaCD) as compared with the WR19L/Fas-SM(+) cells, which are capable of SM synthesis. By expression cloning method using WR19L/Fas-SM(-) cells and MbetaCD-based selection, we have succeeded in cloning of a human cDNA responsible for SM synthase activity. The cDNA encodes a peptide of 413 amino acids named SMS1 (putative molecular mass, 48.6 kDa), which contains a sterile alpha motif domain near the N-terminal region and four predicted transmembrane domains. WR19L/Fas-SM(-) cells expressing SMS1 cDNA (WR19L/Fas-SMS1) restored the resistance against MbetaCD, the accumulation of SM at the plasma membrane, and SM synthesis by transferring phosphocholine from phosphatidylcholine to ceramide. Furthermore, WR19L/Fas-SMS1 cells, as well as WR19L/Fas-SM(-) cells supplemented with exogenous SM, restored cell growth ability in serum-free conditions, where the growth of WR19L/Fas-SM(-) cells was severely inhibited. The results suggest that SMS1 is responsible for SM synthase activity in mammalian cells and plays a critical role in cell growth of mouse lymphoid cells.  相似文献   
65.
A macrocyclic octaamine 1 having a covalently linked lipid-bundle structure was introduced as a new type of siRNA carrier. Gel electrophoresis, DLS, and SPR results indicate that it strongly binds to a luciferase-targeting 21-mer (42P) siRNA with a ratio of 1/P congruent with 0.3 (1/N congruent with 2.4) to give remarkably compact 1-siRNA complexes with an average size of approximately 10 nm. The 1-mediated siRNA silencing of the exogenous luciferase gene occurs with a 90-95% efficiency. The overall suppression-[siRNA] profile with a 5-10% residual activity in the saturation region is commonly observed irrespective of the cell type (HeLa, HepG2, or HEK293), the order, or timing (stepwise or simultaneous) of supply of the siRNA and that of the luciferase-encoding plasmid, the level of mRNA transcribed, or the type of carriers (1 vs lipofectamine 2000). The silencing of the endogenous DsRed2 gene stably incorporated in the genome of HeLa cells also has a similar overall profile. These results suggest that (1) the cellular uptake of the plasmid and that of the siRNA are basically independent of each other and (2) the incomplete silencing is not due to insufficient siRNA delivery. Implication of item 2 is briefly discussed.  相似文献   
66.
Alternative splicing of pre-mRNAs allows multicellular organisms to create a huge diversity of proteomes from a finite number of genes. But extensive studies in vitro or in cultured cells have not fully explained the regulation mechanisms of tissue-specific or developmentally regulated alternative splicing in living organisms. Here we report a transgenic reporter system that allows visualization of expression profiles of mutually exclusive exons in Caenorhabditis elegans. Reporters for egl-15 exons 5A and 5B showed tissue-specific profiles, and we isolated mutants defective in the tissue specificity. We identified alternative-splicing defective-1 (asd-1), encoding a new RNA-binding protein of the evolutionarily conserved Fox-1 family, as a regulator of the egl-15 reporter. Furthermore, an asd-1;fox-1 double mutant was defective in the expression of endogenous egl-15 (5A) and phenocopied egl-15 (5A) mutant. This transgenic reporter system can be a powerful experimental tool for the comprehensive study of expression profiles and regulation mechanisms of alternative splicing in metazoans.  相似文献   
67.
Synthesis of extracellular sulfated molecules requires active 3′-phosphoadenosine 5′-phosphosulfate (PAPS). For sulfation to occur, PAPS must pass through the Golgi membrane, which is facilitated by Golgi-resident PAPS transporters. Caenorhabditis elegans PAPS transporters are encoded by two genes, pst-1 and pst-2. Using the yeast heterologous expression system, we characterized PST-1 and PST-2 as PAPS transporters. We created deletion mutants to study the importance of PAPS transporter activity. The pst-1 deletion mutant exhibited defects in cuticle formation, post-embryonic seam cell development, vulval morphogenesis, cell migration, and embryogenesis. The pst-2 mutant exhibited a wild-type phenotype. The defects observed in the pst-1 mutant could be rescued by transgenic expression of pst-1 and hPAPST1 but not pst-2 or hPAPST2. Moreover, the phenotype of a pst-1;pst-2 double mutant were similar to those of the pst-1 single mutant, except that larval cuticle formation was more severely defected. Disaccharide analysis revealed that heparan sulfate from these mutants was undersulfated. Gene expression reporter analysis revealed that these PAPS transporters exhibited different tissue distributions and subcellular localizations. These data suggest that pst-1 and pst-2 play different physiological roles in heparan sulfate modification and development.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号