首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2714篇
  免费   160篇
  国内免费   1篇
  2022年   14篇
  2021年   37篇
  2020年   17篇
  2019年   18篇
  2018年   31篇
  2017年   34篇
  2016年   44篇
  2015年   92篇
  2014年   93篇
  2013年   135篇
  2012年   146篇
  2011年   167篇
  2010年   101篇
  2009年   82篇
  2008年   131篇
  2007年   140篇
  2006年   114篇
  2005年   122篇
  2004年   113篇
  2003年   121篇
  2002年   119篇
  2001年   101篇
  2000年   83篇
  1999年   68篇
  1998年   32篇
  1997年   27篇
  1996年   28篇
  1995年   22篇
  1994年   16篇
  1993年   21篇
  1992年   63篇
  1991年   43篇
  1990年   37篇
  1989年   43篇
  1988年   31篇
  1987年   39篇
  1986年   35篇
  1985年   47篇
  1984年   30篇
  1983年   22篇
  1982年   14篇
  1981年   14篇
  1980年   13篇
  1979年   25篇
  1975年   14篇
  1974年   13篇
  1973年   11篇
  1972年   14篇
  1971年   12篇
  1970年   11篇
排序方式: 共有2875条查询结果,搜索用时 31 毫秒
971.
The activation of peroxisome-proliferator-activated receptor-γ (PPARγ), which plays a central role in adipocyte differentiation, depends on ligand-dependent co-activator recruitment. In this study, we developed a novel method of PPARγ ligand screening by measuring the increase in fluorescent polarization accompanied by the interaction of a fluorescent co-activator and PPARγ. Sterol receptor co-activator-1 (SRC-1), a major PPARγ co-activator, was probed by fluorescent TAMRA by the Amber codon fluorescence probe method. Polarization was increased by adding PPARγ ligands to a solution containing labeled SRC-1 (designated TAMRA-SRC-S) and PPARγ. The disassociation constants (Kd) of the PPARγ synthesized ligands, pioglitazone (221 nM), troglitazone (83.0 nM), and 15-deoxy-Δ12,14-prostaglandin J(2) (15d-ΔPGJ(2)) (156 nM), were determined by this method. Farnesol (2.89 μM) and bixin (21.1 μM), which we have reported to be PPARγ ligands, increased the fluorescent polarization. Their Kd values were in agreement with the ED(50) values obtained in the luciferase assay. The results indicate that the method is valuable for screening natural PPARγ ligands.  相似文献   
972.
Cry toxins have been reported to bind not only to receptors on insect cells but also to several unrelated proteins. In this study, we investigated the binding properties of Bacillus thuringiensis Cry toxins, focusing on domain III, a Cry toxin region with a structure that of the galactose-binding domain-like. Cry1Aa, Cry1Ac, and Cry8Ca specifically bound to several proteins unrelated to insect midgut cells. Cry1Aa binding to Cry toxin-binding proteins was inhibited by a monoclonal antibody, 2C2, indicating that Cry1Aa binds to these Cry toxin-binding proteins through domain III. Cry1Aa binding to Bombyx mori aminopeptidase N and other Cry toxin-binding proteins was inhibited by carbonic anhydrase, a Cry toxin-binding protein. The binding regions of carbonic anhydrase and Bombyx mori aminopeptidase N were narrowed to regions of less than 20 amino acids that did not have any similarity, suggesting that Cry toxin domain III has a binding pocket for multiple proteins.  相似文献   
973.
The convergent synthesis of C35-fluorinated analogues of solamin, a mono-THF Annonaceous acetogenin, has been achieved by the Sonogashira coupling of the THF ring fragment and the fluorinated γ-lactone fragment. It was revealed that the number of fluorine atoms on the γ-lactone moiety affects the growth inhibitory activities against human cancer cell lines.  相似文献   
974.
Li N  Kojima S  Homma M 《Journal of bacteriology》2011,193(15):3773-3784
The stator proteins PomA and PomB form a complex that couples Na+ influx to torque generation in the polar flagellar motor of Vibrio alginolyticus. This stator complex is anchored to an appropriate place around the rotor through a putative peptidoglycan-binding (PGB) domain in the periplasmic region of PomB (PomBC). To investigate the function of PomBC, a series of N-terminally-truncated and in-frame mutants with deletions between the transmembrane (TM) segment and the PGB domain of PomB was constructed. A PomBC fragment consisting of residues 135 to 315 (PomBC5) formed a stable homodimer and significantly inhibited the motility of wild-type cells when overexpressed in the periplasm. A fragment with an in-frame deletion (PomBΔL) of up to 80 residues retained function, and its overexpression with PomA impaired cell growth. This inhibitory effect was suppressed by a mutation at the functionally critical Asp (D24N) in the TM segment of PomB, suggesting that a high level of Na+ influx through the mutant stator causes the growth impairment. The overproduction of functional PomA/PomBΔL stators also reduced the motile fractions of the cells. That effect could be slightly relieved by a mutation (L168P) in the putative N-terminal α-helix that connects to the PGB domain without affecting the growth inhibition, suggesting that a conformational change of the region including the PGB domain affects stator assembly. Our results reveal common features of the periplasmic region of PomB/MotB and demonstrate that a flexible linker that contains a “plug” segment is important for the control of Na+ influx through the stator complex as well as for stator assembly.  相似文献   
975.
Muscle atrophy is caused by accelerated protein degradation and occurs in many pathological states. Two muscle-specific ubiquitin ligases, MAFbx/atrogin-1 and muscle RING-finger 1 (MuRF1), are prominently induced during muscle atrophy and mediate atrophy-associated protein degradation. Blocking the expression of these two ubiquitin ligases provides protection against muscle atrophy. Here we report that miR-23a suppresses the translation of both MAFbx/atrogin-1 and MuRF1 in a 3'-UTR-dependent manner. Ectopic expression of miR-23a is sufficient to protect muscles from atrophy in vitro and in vivo. Furthermore, miR-23a transgenic mice showed resistance against glucocorticoid-induced skeletal muscle atrophy. These data suggest that suppression of multiple regulators by a single miRNA can have significant consequences in adult tissues.  相似文献   
976.
Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via the fatty acid biosynthetic pathway. This pathway is regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-amino acid peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets, which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells. PBAN stimulates lipolysis of the stored lipid droplet triacylglycerols (TAGs) and releases the precursor for final modification. PBAN exerts its physiological function via the PG cell-surface PBAN receptor, a G protein-coupled receptor that belongs to the neuromedin U receptor family. The PBAN receptor-mediated signal is transmitted via a canonical store-operated channel activation pathway utilizing Gq-mediated phospholipase C activation (Hull, J. J., Kajigaya, R., Imai, K., and Matsumoto, S. (2007) Biosci. Biotechnol. Biochem. 71, 1993-2001; Hull, J. J., Lee, J. M., Kajigaya, R., and Matsumoto, S. (2009) J. Biol. Chem. 284, 31200-31213; Hull, J. J., Lee, J. M., and Matsumoto, S. (2010) Insect Mol. Biol. 19, 553-566). Little, however, is known about the molecular components regulating TAG lipolysis in PG cells. In the current study we found that PBAN signaling involves phosphorylation of an insect PAT family protein named B. mori lipid storage droplet protein-1 (BmLsd1) and that BmLsd1 plays an essential role in the TAG lipolysis associated with bombykol production. Unlike mammalian PAT family perilipins, however, BmLsd1 activation is dependent on phosphorylation by B. mori Ca(2+)/calmodulin-dependent protein kinase II rather than protein kinase A.  相似文献   
977.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/death receptor 5 (DR5)-mediated cell death plays an important role in the elimination of tumor cells and transformed cells. Recently, recombinant TRAIL and agonistic anti-DR5 monoclonal antibodies have been developed and applied to cancer therapy. However, depending on the type of cancer, the sensitivity to TRAIL has been reportedly different, and some tumor cells are resistant to TRAIL-mediated apoptosis. Using confocal microscopy, we found that large amounts of DR5 were localized in the nucleus in HeLa and HepG2 cells. Moreover, these tumor cells were resistant to TRAIL, whereas DU145 cells, which do not have nuclear DR5, were highly sensitive to TRAIL. By means of immunoprecipitation and Western blot analysis, we found that DR5 and importin β1 were physically associated, suggesting that the nuclear DR5 was transported through the nuclear import pathway mediated by importin β1. Two functional nuclear localization signals were identified in DR5, the mutation of which abrogated the nuclear localization of DR5 in HeLa cells. Moreover, the nuclear transport of DR5 was also prevented by the knockdown of importin β1 using siRNA, resulting in the up-regulation of DR5 expression on the cell surface and an increased sensitivity of HeLa and HepG2 cells to TRAIL. Taken together, our findings suggest that the importin β1-mediated nuclear localization of DR5 limits the DR5/TRAIL-induced cell death of human tumor cells and thus can be a novel target to improve cancer therapy with recombinant TRAIL and anti-DR5 antibodies.  相似文献   
978.
The phenotypes of mice carrying clock gene mutations have been critical to understanding the mammalian clock function. However, behavior does not necessarily reflect cell-autonomous clock phenotypes, because of the hierarchical dominance of the central clock. We performed cell-based siRNA knockdown and cDNA overexpression and monitored rhythm using bioluminescent reporters of clock genes. We found that knockdown of DBP, D-box positive regulator, in our model led to a short-period phenotype, whereas overexpressing of DBP produced a long-period rhythm when compared to controls. Furthermore, knockdown and overexpressing of E4BP4, D-box negative regulator, led to an opposite effect of DBP. Our experiments demonstrated that D-box regulators play a crucial role in determining the period length of Per1 and Per2 promoter-driven circadian rhythms in Rat-1 fibroblasts.  相似文献   
979.
TLR3, one of the TLRs involved in the recognition of infectious pathogens for innate and adaptive immunity, primarily recognizes viral-associated dsRNA. Recognition of dsRNA byproducts released from apoptotic and necrotic cells is a recently proposed mechanism for the amplification of toxicity, suggesting a pivotal participation of TLR3 in viral infection, as well as in lung diseases where apoptosis plays a critical role, such as asthma and chronic obstructive pulmonary disease. In addition to metabolic control, insulin signaling was postulated to be protective by inhibiting apoptosis. Therefore, we explored the role of insulin signaling in protecting against TLR3-mediated apoptosis of human bronchial epithelial cells. Significant TLR3-mediated apoptosis was induced by polyinosinic-polycytidylic acid, a dsRNA analog, via caspase-8-dependent mechanisms. However, insulin efficiently inhibited TLR3/polyinosinic-polycytidylic acid-induced human bronchial epithelial cell apoptosis via PI3K/Akt and ERK pathways, at least in part, via upregulation of cellular FLIPs and through protein synthesis-independent mechanisms. These results indicate the significance of TLR3-mediated dsRNA-induced apoptosis in the pathogenesis of apoptosis-driven lung disease and provide evidence for a novel protective role of insulin.  相似文献   
980.
CD160 was recently identified as a T cell coinhibitory molecule that interacts with the herpesvirus entry mediator (HVEM) on antigen-presenting cells to deliver a potent inhibitory signal to CD4+ T cells. HVEM also binds to the coinhibitory receptor BTLA (B- and T-lymphocyte attenuator) and the costimulatory receptor LIGHT (which is homologous to lymphotoxins, exhibits inducible expression, and competes with the herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes, or TNFSF14), thus regulating the CD160/BTLA/LIGHT/HVEM signaling pathway. To date, the detailed properties of the formation of these complexes, especially HVEM binding to the newly identified receptor CD160, and the relationship of CD160 with BTLA and LIGHT are still unclear. We performed N-terminal sequencing and a mass spectrometric analysis, which revealed that the extracellular domain of CD160 exists primarily in the monomeric form. The surface plasmon resonance analysis revealed that CD160 binds directly to the cysteine-rich domain 1-3 of HVEM with a similar affinity to, but slower dissociation rate than, that of BTLA. Notably, CD160 competed with BTLA for binding to HVEM; in contrast, LIGHT did not affect HVEM binding to either CD160 or BTLA. The results of a mutagenesis study of HVEM also suggest that the CD160 binding region on HVEM was slightly different from, but overlapped with, the BTLA binding site. Interestingly, an anti-CD160 antibody exhibiting antiangiogenic properties blocked CD160/HVEM binding. These results provide insight into the molecular architecture of the CD160/BTLA/LIGHT/HVEM signaling complex that regulates immune function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号