首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   846篇
  免费   47篇
  2023年   6篇
  2022年   6篇
  2021年   17篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   21篇
  2016年   28篇
  2015年   26篇
  2014年   31篇
  2013年   63篇
  2012年   62篇
  2011年   59篇
  2010年   43篇
  2009年   26篇
  2008年   45篇
  2007年   51篇
  2006年   24篇
  2005年   45篇
  2004年   26篇
  2003年   36篇
  2002年   37篇
  2001年   12篇
  2000年   5篇
  1999年   9篇
  1998年   11篇
  1997年   4篇
  1996年   5篇
  1995年   9篇
  1994年   10篇
  1993年   8篇
  1992年   15篇
  1991年   10篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1973年   7篇
  1972年   7篇
  1970年   9篇
  1967年   3篇
  1965年   3篇
排序方式: 共有893条查询结果,搜索用时 495 毫秒
91.
T cell activation requires both antigen specific and co-stimulatory signals that include the interaction of CD28 with its ligands CD80 and CD86. These signals are delivered by antigen presenting cells (APC) in the context of the immunological synapse (IS). Reorganization of the cytoskeleton is required for the formation and maintenance of the IS. Our results show that a highly conserved polylysine motif in CD86 cytoplasmic tail, herein referred to as the K4 motif, is responsible for the constitutive association of CD86 to the cytoskeleton in primary human APC as well as in a murine APC model. This motif is not involved in initial APC:T cell conjugate formation but mutation of the K4 motif affects CD86 reorientation at the IS. Importantly, APCs expressing CD86 with mutated K4 motif are severely compromised in their capacity to trigger complete T cell activation upon peptide presentation as measured by IL-2 secretion. Altogether, our results reveal the critical importance of the cytoskeleton-dependent CD86 polarization to the IS and more specifically the K4 motif for effective co-signaling.  相似文献   
92.
The main cofactors that determine the photosystem II (PSII) oxygen evolution activity are borne by the D1 and D2 subunits. In the cyanobacterium Thermosynechococcus elongatus, there are three psbA genes coding for D1. Among the 344 residues constituting D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. Here, we present the first study of PsbA2-PSII. Using EPR and UV-visible time-resolved absorption spectroscopy, we show that: (i) the time-resolved EPR spectrum of TyrZ in the (S3TyrZ)′ is slightly modified; (ii) the split EPR signal arising from TyrZ in the (S2TyrZ)′ state induced by near-infrared illumination at 4.2 K of the S3TyrZ state is significantly modified; and (iii) the slow phases of P680+⋅ reduction by TyrZ are slowed down from the hundreds of μs time range to the ms time range, whereas both the S1TyrZ → S2TyrZ and the S3TyrZ → S0TyrZ + O2 transition kinetics remained similar to those in PsbA(1/3)-PSII. These results show that the geometry of the TyrZ phenol and its environment, likely the Tyr-O···H···Nϵ-His bonding, are modified in PsbA2-PSII when compared with PsbA(1/3)-PSII. They also point to the dynamics of the proton-coupled electron transfer processes associated with the oxidation of TyrZ being affected. From sequence comparison, we propose that the C144P and P173M substitutions in PsbA2-PSII versus PsbA(1/3)-PSII, respectively located upstream of the α-helix bearing TyrZ and between the two α-helices bearing TyrZ and its hydrogen-bonded partner, His-190, are responsible for these changes.  相似文献   
93.
FliT is a flagellar type III export chaperone specific for the filament-capping protein FliD. The FliT/FliD complex binds to the FliI ATPase of the flagellar export apparatus. The C-terminal α4 helix of FliT controls its interaction with FliI but it remains unknown how it does so. Here, we analysed the FliI-FliT interaction by pull-down assays using GST affinity chromatography. FliT94, missing the C-terminal α4 helix, bound to the extreme N-terminal region of FliI (FliI(EN)) with high affinity and to the C-terminal ATPase domain (FliI(CAT)) with low affinity. The C-terminal α4 helix of FliT suppressed the interaction with FliI(EN). FliH and FliT94 bound to a common binding site on FliI(EN) and hence FliH induced the release of FliI from FliT94 in an ATP-independent manner. FliD increased the binding affinity of FliI(CAT) for FliT. These results raise a possible hypothesis that the FliH/FliI complex binds to the FliT/FliD complex through FliI(CAT) to escort it from the cytoplasm to the export gate made up of six integral membrane proteins and that, upon dissociation of FliD from FliT, FliT94 may bind to FliI(EN) and then FliI may transfer from FliT94 to FliH by the direct competition of FliT94 and FliH for FliI(EN).  相似文献   
94.
Ischemia/reperfusion (I/R) is an important cause of acute renal failure. Recent studies have shown that the complement system mediated by the mannan-binding protein (MBP), which is a C-type serum lectin recognizing mannose, fucose and N-acetylglucosamine residues, plays a critical role in the pathogenesis of ischemic acute renal failure. MBP causes complement activation through the MBP lectin pathway and a resulting complement component, C3b, is accumulated on the brush borders of kidney proximal tubules in a renal I/R-operated mouse kidney. However, the initial step of the complement activation has not been studied extensively. We previously identified both meprins α and β, highly glycosylated zinc metalloproteases, localized on kidney proximal tubules as endogenous MBP ligands. In the present study, we demonstrated that serum-type MBP (S-MBP) and C3b were co-localized with meprins on both the cortex and the medulla in the renal I/R-operated mouse kidney. S-MBP was indicated to interact with meprins in vivo in the I/R-operated mouse kidney and was shown to initiate the complement activation through the interaction with meprins in vitro. Taken together, the present study strongly suggested that the binding of S-MBP to meprins triggers the complement activation through the lectin pathway and may cause the acute renal failure due to I/R on kidney transplantation and hemorrhagic shock.  相似文献   
95.
Membrane-anchored receptor-like protein kinases (RLKs) recognize extracellular signals at the cell surface and activate the downstream signaling pathway by phosphorylating specific target proteins. We analyzed a receptor-like cytosolic kinase (RLCK) gene, ARCK1, whose expression was induced by abiotic stress. ARCK1 belongs to the cysteine-rich repeat (CRR) RLK sub-family and encodes a cytosolic protein kinase. The arck1 mutant showed higher sensitivity than the wild-type to ABA and osmotic stress during the post-germinative growth phase. CRK36, an abiotic stress-inducible RLK belonging to the CRR RLK sub-family, was screened as a potential interacting factor with ARCK1 by co-expression analyses and a yeast two-hybrid system. CRK36 physically interacted with ARCK1 in plant cells, and the kinase domain of CRK36 phosphorylated ARCK1 in vitro. We generated CRK36 RNAi transgenic plants, and found that transgenic plants with suppressed CRK36 expression showed higher sensitivity than arck1-2 to ABA and osmotic stress during the post-germinative growth phase. Microarray analysis using CRK36 RNAi plants revealed that suppression of CRK36 up-regulates several ABA-responsive genes, such as LEA genes, oleosin, ABI4 and ABI5. These results suggest that CRK36 and ARCK1 form a complex and negatively control ABA and osmotic stress signal transduction.  相似文献   
96.
In response to contamination from the recent Fukushima nuclear accident, we conducted radionuclide analysis on bamboos sampled from six sites within a 25 to 980 km radius of the Fukushima Daiichi nuclear power plant. Maximum activity concentrations of radiocesium (134)Cs and (137)Cs in samples from Fukushima city, 65 km away from the Fukushima Daiichi plant, were in excess of 71 and 79 kBq/kg, dry weight (DW), respectively. In Kashiwa city, 195 km away from the Fukushima Daiichi, the sample concentrations were in excess of 3.4 and 4.3 kBq/kg DW, respectively. In Toyohashi city, 440 km away from the Fukushima Daiichi, the concentrations were below the measurable limits of up to 4.5 Bq/kg DW. In the radiocesium contaminated samples, the radiocesium activity was higher in mature and fallen leaves than in young leaves, branches and culms.  相似文献   
97.
Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton‐conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non‐sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g?1, respectively. Solvent cast block copolymer membranes show well‐connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 °C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 °C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g?1 reaches above 6 mS cm?1 under 30% relative humidity at 80 °C, to be compared with 10 mS cm?1 for NRE212 under the same conditions.  相似文献   
98.
As an alternative to the previously reported solid dispersion formulation for enhancing the oral absorption of thiazolo[5,4-b]pyridine 1, we investigated novel N-acyl imide prodrugs of 1 as RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors. Introducing N-acyl promoieties at the benzanilide position gave chemically stable imides. N-tert-Butoxycarbonyl (Boc) introduced imide 6 was a promising prodrug, which was converted to the active compound 1 after its oral administration in mice. Cocrystals of 6 with AcOH (6b) possessed good physicochemical properties with moderate thermodynamic solubility (19μg/mL). This crystalline prodrug 6b was rapidly and enzymatically converted into 1 after its oral absorption in mice, rats, dogs, and monkeys. Prodrug 6b showed in vivo antitumor regressive efficacy (T/C=-6.4%) in an A375 melanoma xenograft model in rats. Hence, we selected 6b as a promising candidate and are performing further studies. Herein, we report the design, synthesis, and characterization of novel imide-type prodrugs.  相似文献   
99.
Plants constantly survey the surrounding environment using several sets of photoreceptors. They can sense changes in the quantity (=intensity) and quality (=wavelength) of light and use this information to adjust their physiological responses, growth, and developmental patterns. In addition to the classical photoreceptors, such as phytochromes, cryptochromes, and phototropins, ZEITLUPE (ZTL), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and LOV KELCH PROTEIN 2 (LKP2) proteins have been recently identified as blue-light photoreceptors that are important for regulation of the circadian clock and photoperiodic flowering. The ZTL/FKF1/LKP2 protein family possesses a unique combination of domains: a blue-light-absorbing LOV (Light, Oxygen, or Voltage) domain along with domains involved in protein degradation. Here, we summarize recent advances in our understanding of the function of the Arabidopsis ZTL/FKF1/LKP2 proteins. We summarize the distinct photochemical properties of their LOV domains and discuss the molecular mechanisms by which the ZTL/FKF1/LKP2 proteins regulate the circadian clock and photoperiodic flowering by controlling blue-light-dependent protein degradation.  相似文献   
100.
ABSTRACT: Computer simulation has been an important technique to capture the dynamics of biochemical networks. In most networks, however, few kinetic parameters have been measured in vivo because of experimental complexity. We develop a kinetic parameter estimation system, named the CADLIVE Optimizer, which comprises genetic algorithms-based solvers with a graphical user interface. This optimizer is integrated into the CADLIVE Dynamic Simulator to attain efficient simulation for dynamic models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号