首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   847篇
  免费   47篇
  2023年   6篇
  2022年   7篇
  2021年   17篇
  2020年   6篇
  2019年   9篇
  2018年   13篇
  2017年   21篇
  2016年   28篇
  2015年   26篇
  2014年   31篇
  2013年   63篇
  2012年   62篇
  2011年   59篇
  2010年   43篇
  2009年   26篇
  2008年   45篇
  2007年   51篇
  2006年   24篇
  2005年   45篇
  2004年   26篇
  2003年   36篇
  2002年   37篇
  2001年   12篇
  2000年   5篇
  1999年   9篇
  1998年   11篇
  1997年   4篇
  1996年   5篇
  1995年   9篇
  1994年   10篇
  1993年   8篇
  1992年   15篇
  1991年   10篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1973年   7篇
  1972年   7篇
  1970年   9篇
  1967年   3篇
  1965年   3篇
排序方式: 共有894条查询结果,搜索用时 15 毫秒
21.
Osmotic adjustment plays a fundamental role in water stress responses and growth in plants; however, the molecular mechanisms governing this process are not fully understood. Here, we demonstrated that the KUP potassium transporter family plays important roles in this process, under the control of abscisic acid (ABA) and auxin. We generated Arabidopsis thaliana multiple mutants for K+ uptake transporter 6 (KUP6), KUP8, KUP2/SHORT HYPOCOTYL3, and an ABA-responsive potassium efflux channel, guard cell outward rectifying K+ channel (GORK). The triple mutants, kup268 and kup68 gork, exhibited enhanced cell expansion, suggesting that these KUPs negatively regulate turgor-dependent growth. Potassium uptake experiments using 86radioactive rubidium ion (86Rb+) in the mutants indicated that these KUPs might be involved in potassium efflux in Arabidopsis roots. The mutants showed increased auxin responses and decreased sensitivity to an auxin inhibitor (1-N-naphthylphthalamic acid) and ABA in lateral root growth. During water deficit stress, kup68 gork impaired ABA-mediated stomatal closing, and kup268 and kup68 gork decreased survival of drought stress. The protein kinase SNF1-related protein kinases 2E (SRK2E), a key component of ABA signaling, interacted with and phosphorylated KUP6, suggesting that KUP functions are regulated directly via an ABA signaling complex. We propose that the KUP6 subfamily transporters act as key factors in osmotic adjustment by balancing potassium homeostasis in cell growth and drought stress responses.  相似文献   
22.
23.
24.
There is increasing evidence that ATP acts on purinergic receptors and mediates synaptic transmission in the retina. In a previous study, we raised the possibility that P2X-purinoceptors, presumably P2X2-purinoceptors in OFF-cholinergic amacrine cells, play a key role in the formation of OFF pathway-specific modulation. In this study, we examined whether the P2Y1-purinoceptors can function in cholinergic amacrine cells in the mouse retina since cholinergic amacrine cells in the rat retina express P2Y1-purinoceptors. P2Y1-purinoceptors were shown to be expressed in dendrites of both ON- and OFF-cholinergic amacrine cells in adults. At postnatal day 7, there was immunoreactivity for P2Y1-purinoceptors in the soma of cholinergic amacrine cells. At postnatal day 14, weak immunoreactivity for P2Y1-purinoceptors was detected in the dendrites but not in the soma of cholinergic amacrine cells. At postnatal day 21, strong immunoreactivity for P2Y1-purinoceptors was detected in dendrites of cholinergic amacrine cells. The expression pattern of P2Y1-purinoceptors was not affected by visual experience. We concluded that P2Y1-purinoceptors are not involved in the OFF-pathway-specific signal transmission in cholinergic amacrine cells of the mouse retina.  相似文献   
25.
The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.  相似文献   
26.
The aim of this study was to examine the effects of partial removal of yolk and cryoprotectant mixtures on the viability of cryopreserved primordial germ cells (PGCs) and elucidated the differentiation ability of cryopreserved PGCs in zebrafish. First, dechorionated yolk-intact and yolk-depleted (partially yolk removed) embryos, PGCs of which were labeled with green fluorescence protein (GFP), were vitrified after serial exposures to pretreatment solution (PS) and vitrification solution (VS) that contained ethylene glycol (EG), dimethyl sulfoxide (Me2SO) or propylene glycol at 3 and 5 M, respectively. Although partial removal of yolk improved the viability of cryopreserved PGCs, numbers of PGCs with pseudopodial movement were limited (0–2.6 cells/embryo). Next, yolk-depleted embryos were cryopreserved using mixtures of two types of cryoprotectants. The maximum survival rate of PGCs (81%; 9.6 cells/embryo) was obtained from the yolk-depleted embryos vitrified using PS containing 2 M EG + 1 M Me2SO and VS containing 3 M EG + 2 M Me2SO and 56% (5.3 cells/embryo) of PGCs showed pseudopodial movement. Finally, PGCs recovered from yolk-depleted embryos (wild-type) that were vitrified under the optimum condition were transplanted individually into 236 sterilized recipient blastulae (recessive light-colored). Seven recipients matured and generated progeny with characteristics inherited from the PGC donor. In conclusion, the authors confirmed the beneficial effects of partial removal of yolk on the viability of cryopreserved PGCs and that the viability of the PGCs was improved by using PS and VS that contained two types of cryoprotectants, especially PS containing 2 M EG + 1 M Me2SO and VS containing 3 M EG + 2 M Me2SO, and that recovered PGCs retained ability to differentiate into functional gametes.  相似文献   
27.
Female Ascotis selenaria (Geometridae) moths use 3,4-epoxy-(Z,Z)-6,9-nonadecadiene, which is synthesized from linolenic acid, as the main component of their sex pheromone. While the use of dietary linolenic or linoleic fatty acid derivatives as sex pheromone components has been observed in moth species belonging to a few families including Geometridae, the majority of moths use derivatives of a common saturated fatty acid, palmitic acid, as their sex pheromone components. We attempted to gain insight into the differentiation of pheromone biosynthetic pathways in geometrids by analyzing the desaturase genes expressed in the pheromone gland of A. selenaria. We demonstrated that a Δ11-desaturase-like gene (Asdesat1) was specifically expressed in the pheromone gland of A. selenaria in spite of the absence of a desaturation step in the pheromone biosynthetic pathway in this species. Further analysis revealed that the presumed transmembrane domains were degenerated in Asdesat1. Phylogenetic analysis demonstrated that Asdesat1 anciently diverged from the lineage of Δ11-desaturases, which are currently widely used in the biosynthesis of sex pheromones by moths. These results suggest that an ancestral Δ11-desaturase became dysfunctional in A. selenaria after a shift in pheromone biosynthetic pathways.  相似文献   
28.
Assembly of the bacterial flagellar filament is strictly sequential; the junction proteins, FlgK and FlgL, are assembled at the distal end of the hook prior to the FliD cap, which supports assembly of as many as 30 000 FliC molecules into the filament. Export of these proteins requires assistance of flagellar chaperones: FlgN for FlgK and FlgL, FliT for FliD and FliS for FliC. The C‐terminal cytoplasmic domain of FlhA (FlhAC), a membrane component of the export apparatus, provides a binding‐site for these chaperone–substrate complexes but it remains unknown how it co‐ordinates flagellar protein export. Here, we report that the highly conserved hydrophobic dimple of FlhAC is involved in the export of FlgK, FlgL, FliD and FliC but not in proteins responsible for the structure and assembly of the hook, and that the binding affinity of FlhAC for the FlgN/FlgK complex is slightly higher than that for the FliT/FliD complex and about 14‐fold higher than that for the FliS/FliC complex, leading to the proposal that the different binding affinities of FlhAC for these chaperone/substrate complexes may confer an advantage for the efficient formation of the junction and cap structures at the tip of the hook prior to filament formation.  相似文献   
29.
Two types of glycerol dehydrogenase (GDH) were found on DEAE-cellulose column chromatography of cell-free extracts of methylotrophic yeasts. One type, designated as GDH I, showed only the reductive activity which was detected in the reaction system containing dihydroxyacetone and NADH, at pH 6.0. The other type, designated as GDH II, showed the oxidative activity which was detected in the system containing glycerol and NAD +, at pH 9.0, together with the reductive activity.

Candida boidinii No. 2201, which possesses the phosphorylative pathway for glycerol dissimilation, had only GDH I when grown on glycerol or methanol as the carbon source. Hansenula ofunaensis, which has the oxidative pathway, had both GDH I and GDH II when grown on glycerol, but only GDH I when grown on methanol. Hansenula polymorpha Dl-1, which has both pathways, had both GDH I and GDH II when grown on glycerol or methanol.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号