首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2801篇
  免费   183篇
  2984篇
  2022年   23篇
  2021年   27篇
  2020年   22篇
  2019年   39篇
  2018年   38篇
  2017年   46篇
  2016年   55篇
  2015年   99篇
  2014年   96篇
  2013年   159篇
  2012年   210篇
  2011年   171篇
  2010年   130篇
  2009年   113篇
  2008年   193篇
  2007年   230篇
  2006年   197篇
  2005年   175篇
  2004年   188篇
  2003年   177篇
  2002年   183篇
  2001年   30篇
  2000年   28篇
  1999年   28篇
  1998年   31篇
  1997年   21篇
  1996年   29篇
  1995年   22篇
  1994年   25篇
  1993年   20篇
  1992年   17篇
  1991年   19篇
  1990年   13篇
  1989年   8篇
  1988年   5篇
  1987年   12篇
  1986年   4篇
  1985年   14篇
  1984年   13篇
  1983年   10篇
  1982年   6篇
  1981年   8篇
  1980年   6篇
  1976年   4篇
  1975年   5篇
  1974年   3篇
  1973年   6篇
  1972年   5篇
  1971年   4篇
  1969年   4篇
排序方式: 共有2984条查询结果,搜索用时 15 毫秒
981.
BAF is a double-stranded DNA binding protein required for proper nuclear morphology and function in Drosophila development. Imaginal discs of Drosophila baf-null mutants were found to exist only in younger larvae as small degenerative tissues. Immunohistochemical analyses showed diffuse lamin distribution, DNA fragmentation, and activation of caspase drICE in these tissues, suggesting that apoptotic events can be induced by the loss of baf. We therefore investigated the fate of BAF after induction of the pro-apoptotic hid transgene, and found that the loss of DNA binding forms of BAF preceded that of non-DNA binding forms of BAF. Furthermore, the DNA binding forms of BAF disappeared from nuclei before DNA fragmentation and NPC clustering were detected, showing that the loss of BAF occurs at the initial stages of nuclear apoptosis. This BAF loss was not detected before drICE activation and was inhibited by Ac-DEVD-CHO caspase inhibitors. In summary, BAF disappears at an early stage due to caspase activity when apoptosis is induced by hid, and its depletion in mutants is sufficient in itself to induce cell death, suggesting it is an apoptotic mediator.  相似文献   
982.
983.
984.
Mechanisms and optimization of in vivo delivery of lipophilic siRNAs   总被引:7,自引:0,他引:7  
Cholesterol-conjugated siRNAs can silence gene expression in vivo. Here we synthesize a variety of lipophilic siRNAs and use them to elucidate the requirements for siRNA delivery in vivo. We show that conjugation to bile acids and long-chain fatty acids, in addition to cholesterol, mediates siRNA uptake into cells and gene silencing in vivo. Efficient and selective uptake of these siRNA conjugates depends on interactions with lipoprotein particles, lipoprotein receptors and transmembrane proteins. High-density lipoprotein (HDL) directs siRNA delivery into liver, gut, kidney and steroidogenic organs, whereas low-density lipoprotein (LDL) targets siRNA primarily to the liver. LDL-receptor expression is essential for siRNA delivery by LDL particles, and SR-BI receptor expression is required for uptake of HDL-bound siRNAs. Cellular uptake also requires the mammalian homolog of the Caenorhabditis elegans transmembrane protein Sid1. Our results demonstrate that conjugation to lipophilic molecules enables effective siRNA uptake through a common mechanism that can be exploited to optimize therapeutic siRNA delivery.  相似文献   
985.
BackgroundCandida yeasts are considered the main agents of nosocomial fungal infections.AimsThis study aimed to establish the epidemiological profile of patients with candiduria hospitalized in the capital of the State of Mato Grosso, in the Central-Western region of Brazil.MethodsPatients from three private hospitals and a public hospital participated in the study. This was an observational and cross-sectional study including analysis of patients mortality. It was carried out from March to August 2015.ResultsA total of 93 patients with candiduria were evaluated. Candida tropicalis was found most commonly (37.6%; n = 35), followed by Candida albicans (36.6%; n = 34), Candida glabrata (19.3%; n = 18), psilosis complex (4.3%; n = 4), Candida lusitaniae (1.1%; n = 1) and Candida krusei (1.1%; n = 1). Antibiotic therapy (100%) and the use of an indwelling urinary catheter (89.2%; n = 83) were the most frequent predisposing factors. Antifungal treatment was given to 65.6% of the patients, and anidulafungin was the most used antifungal. Mortality rates were 48% higher among patients with candiduria who had renal failure. Micafungin was the antifungal most prescribed among the patients who died. Candidemia concomitant with candiduria occurred in eight (8.6%; n = 8) cases. Considering the species recovered in the blood and urine, only one patient had genetically distinct clinical isolates.ConclusionsNon-C. albicans Candida species were predominant, with C. tropicalis being the most responsible for most cases of candiduria.  相似文献   
986.
987.
We previously identified a novel selective androgen receptor modulator, S42, that does not stimulate prostate growth but has a beneficial effect on lipid metabolism. S42 also increased muscle weight of the levator ani in orchiectomized Sprague–Dawley rats. These findings prompted us to investigate whether S42 has a direct effect on cultured C2C12 myotubes. S42 significantly lowered expression levels of the skeletal muscle ubiquitin ligase (muscle atrophy-related gene), atrogin1 and Muscle RING-Finger Protein 1(MuRF1) in C2C12 myotubes, as determined by real time PCR. Phosphorylation of p70 S6 kinase (p70S6K), an essential factor for promoting protein synthesis in skeletal muscle, was significantly increased by S42 to almost the same extent as by insulin, but this was significantly prevented by treatment with rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1). However, phosphorylation of Akt, upstream regulator of mTORC1, was not changed by S42. S42 did not increase insulin-like growth factor 1 (Igf1) mRNA levels in C2C12 myotubes. These results suggest that S42 may have an anabolic effect through activation of mTORC1–p70S6K signaling, independent of IGF-1-Akt signaling and may exert an anti-catabolic effect through inhibition of the degradation pathway in cultured C2C12 myotubes.  相似文献   
988.
Leucine‐rich repeat transmembrane proteins (LRRTMs) are single‐spanning transmembrane proteins that belong to the family of synaptically localized adhesion molecules that play various roles in the formation, maturation, and function of synapses. LRRTMs are highly localized in the post‐synaptic density; however, the mechanisms and significance of LRRTM synaptic clustering remain unclear. Here, we focus on the intracellular domain of LRRTMs and investigate its role in cell surface expression and synaptic clustering. The deletion of 55–56 residues in the cytoplasmic tail caused significantly reduced synaptic clustering of LRRTM1–4 in rat hippocampal neurons, whereas it simultaneously resulted in augmented LRRTM1–2 cell surface expression. A series of deletions and further single amino acid substitutions in the intracellular domain of LRRTM2 demonstrated that a previously uncharacterized sequence at the region of ‐16 to ‐13 from the C‐terminus was responsible for efficient synaptic clustering and proper cell surface trafficking of LRRTMs. Furthermore, the clustering‐deficient LRRTM2 mutant lost the ability to promote the accumulation of post‐synaptic density protein‐95 (PSD‐95). These results suggest that trafficking to the cell surface and synaptic clustering of LRRTMs are regulated by a specific mechanism through this novel sequence in the intracellular domain that underlies post‐synaptic molecular assembly and maturation.

  相似文献   

989.
Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is an important lipid in membrane trafficking in animal and yeast systems; however, its role is still largely obscure in plants. Here, we demonstrate that the phosphatidylinositol 3-phosphate 5-kinase, formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), and its product, PtdIns(3,5)P2, are essential for the maturation process of endosomes to mediate cortical microtubule association of endosomes, thereby controlling proper PIN-FORMED protein trafficking in young cortical and stele cells of root. We found that FAB1 predominantly localizes on the Sorting Nexin1 (SNX1)-residing late endosomes, and a loss of FAB1 function causes the release of late endosomal proteins, Ara7, and SNX1 from the endosome membrane, indicating that FAB1, or its product PtdIns(3,5)P2, mediates the maturation process of the late endosomes. We also found that loss of FAB1 function causes the release of endosomes from cortical microtubules and disturbs proper cortical microtubule organization.Phosphoinositides play an important role in various cellular processes, including determination of organelle identity and mediating signal transduction by recruiting effector molecules to various organelles (Balla, 2013). Among those, D3-phosphorylated phosphoinositides, phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2], play essential roles in the endosomal trafficking and the vacuolar sorting. PtdIns3P is produced from phosphatidylinositol by class III PI3-kinase, vacuolar protein sorting34 (VPS34). In animal cells, PtdIns3P predominantly localizes to the early endosomes and controls endosome maturation, recycling, and degradation of cargo proteins coordinated with Rab5 GTPases (Jean and Kiger, 2012). In Arabidopsis (Arabidopsis thaliana), PtdIns3P mainly resides on the late endosomes and the prevacuolar membrane (Vermeer et al., 2006; Simon et al., 2014). Dysfunction of AtVPS34 resulted in a defect in growth (Welters et al., 1994), root hair elongation (Lee et al., 2008a), and pollen development (Lee et al., 2008b), indicating an important role for AtVPS34 and its product PtdIns3P in plant development. VPS34-mediated PtdIns3P synthesis at the endosomes recruits phosphatidylinositol 3-phosphate 5-kinase formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), then FAB1/PIKfyve produces PtdIns(3,5)P2 from PtdIns3P to mediate late endosome maturation in yeast (Saccharomyces cerevisiae) and animals (Ho et al., 2012; Jean and Kiger, 2012). PtdIns(3,5)P2 has crucial roles in the maintenance of lysosome/vacuole morphology and acidification, membrane trafficking of proteins, autophagy, and signaling mediation in response to various stresses (Shisheva, 2008).FAB1 was discovered in yeast, where mutations were found to result in the formation of aploid and binucleate cells (hence its name FAB). In addition, a loss of Fab1p function causes defects in vacuole function and morphology, cell surface integrity, and cell growth (Yamamoto et al., 1995). In mammalian cells, this kinase is called PIKfyve (FYVE is a PI3P-binding domain). FAB1/PIKfyve forms a protein complex with an adaptor-like protein, Vacuole14 (Bonangelino et al., 1997) and PtdIns(3,5)P2 5-phosphatase (Fig. 4; Gary et al., 2002), indicating that the FAB1 complex catalyzes both PtdIns(3,5)P2 synthesis and turnover simultaneously. In mammalian cells, interference of FAB1/PIKfyve function causes severe defects during embryogenesis, resulting in embryonic lethality in Drosophila spp., Caenorhabditis elegans, and mice (Nicot et al., 2006; Rusten et al., 2006; Ikonomov et al., 2011; Takasuga et al., 2013). Whereas most genomes from human to yeast contain a single-copy gene, the Arabidopsis genome codes for four FAB1 genes (FAB1A–D), of which only FAB1A and FAB1B contain a FYVE domain (Mueller-Roeber and Pical, 2002), and fab1a/fab1b double mutant reveals male gametophyte lethality phenotype in Arabidopsis (Whitley et al., 2009). The mutant pollen shows severe defects in vacuolar reorganization following the first mitotic division of development, suggesting an important role of FAB1 and PtdIns(3,5)P2 in vacuolar rearrangement for pollen development (Whitley et al., 2009).Open in a separate windowFigure 4.Localization of endosomal markers upon down-regulation of FAB1A/B or inhibition of PtdIns(3,5)P2 synthesis in young root cortical cells. Localization of mRFP-SYP43, mRFP-vesicle-associated membrane protein (VAMP727), mRFP-ARA7, and SNX1-mRFP without estradiol (A, E, I, and M) or with estradiol (B, F, J, and N) in the FAB1A/B-amiRNA line, or wild-type (WT) plants without YM201636 (C, G, K, and O) or with YM201636 (D, H, L, and P). Bar = 10 μm. Measurement of fluorescent dot structures (Q). Data represent fluorescent dots per cell (mean ± sd). *, P < 0.001 (Student’s t test).We previously developed a transgenic Arabidopsis line that is able to conditionally down-regulate FAB1A and FAB1B expression simultaneously, and demonstrated that a loss of FAB1 function causes various abnormal phenotypes, including growth inhibition, hypersensitivity to exogenous auxin, disturbance of root gravitropism, and floral organ abnormalities (Hirano et al., 2011). In addition, we found that down-regulation of FAB1A/B expression impaired endomembrane homeostasis, including endocytosis, vacuole formation, and vacuolar acidification, likely causing pleiotropic developmental phenotypes that mostly related to the auxin signaling in Arabidopsis (Hirano et al., 2011; Hirano and Sato, 2011). In plants, auxin is a crucial phytohormone that has a wide variety of physiological roles associated with growth, development, and tropic responses (Zhao, 2010). The polar cell-to-cell transport of auxin is mediated by auxin transporters localized on the plasma membrane (PM), such as PIN-FORMED (PIN) proteins (Vieten et al., 2007; Feraru and Friml, 2008). PINs are used as model molecules for polarity establishment on the PM in Arabidopsis. The establishment of PIN polarity is accomplished by the recycling of PINs between the PM and endosomal compartments comprising the trans-Golgi network/early endosomes (TGN/EEs) and the late endosomes (LEs)/prevacuolar compartments. The PIN-recycling pathway is mediated by multiple endosomal regulatory proteins, such as Rab family GTPases and Sorting Nexin (SNX; Jaillais et al., 2006; Park and Jürgens, 2011).Rab proteins function as molecular switches to regulate the tethering and fusion step of transport vesicles to target membranes. Rab5 members of the Rab GTPases have various functions in the endocytic pathway in eukaryotes. The maturation of the early-to-late endosomes is regulated by Rab5-to-Rab7 conversion, which is regulated by the Mon1/Sand-1-Ccz1 complex (Nordmann et al., 2010; Poteryaev et al., 2010). In plants, Rab5-family proteins, Ara6 and Ara7, and Rha1 play important roles in Rab5-mediated endosomal trafficking including the vacuolar trafficking pathway, thereby regulating of the polar transport of auxin and responses to environmental conditions (Ebine et al., 2011; Inoue et al., 2013).SNXs are composed of two conserved domains: the PHOX domain, involved in the interaction with the phosphoinositides, PtdIns3P and PtdIns (3,5)P2, in the endosomal membrane in animals (Cozier et al., 2002), and the BAR domain, mediating dimerization and binding to curved membranes (Peter et al., 2004). Loss of SNX function disrupts the stable association of the retromer subcomplex, VPS26-Vps29-Vps35, with endosomal membranes, and thus results in retromer dysfunction, indicating that SNXs have a crucial role in the assembly and maintenance of the core retromer function (Teasdale et al., 2001; Cullen and Korswagen, 2012). The first plant SNX was identified as a protein that interacts with various receptor kinases in Brassica oleracea (Vanoosthuyse et al., 2003), and then three SNX genes (SNX1, SNX2a, and SNX2b) were identified in Arabidopsis. The snx1 null mutant exhibits a semidwarf phenotype with other subtle developmental defects (Pourcher et al., 2010). SNX1 is localized to the late endosome and is involved in PIN2 recycling between endosomes and the PM (Jaillais et al., 2006). SNX1 has been reported to interact with cortical microtubules via the microtubule-associated protein Cytoplasmic Linker Associated Protein (CLASP), and the clasp1 null mutant displays aberrant SNX1 endosomes and enhanced PIN2 degradation in the lytic vacuoles, suggesting that an association of SNX1 endosomes and CLASP is important for recycling of PIN transporters (Ambrose et al., 2013).Although many analyses of FAB1/PIKfyve, Rab5 family GTPases, SNXs, and microtubles have been reported, and there are significant similarities in endosomal trafficking, a functional relationship between them is still largely obscure.In this study, we demonstrate that FAB1 produced PtdIns(3,5)P2 in Arabidopsis, and knockdown of FAB1 expression or inhibition of FAB1 activity with a FAB1/PIKfyve inhibitor, YM201636, decreased PtdIns(3,5)P2 content. We also found that FAB1 and its product PtdIns(3,5)P2 mediate the late endosome maturation by recruiting endosomal effector molecules, Ara7 and SNX1, onto endosomes to establish endosome-cortical microtubule interaction. Subsequently, the basal polarity of PIN2 in young cortical cells and PIN1 in stele cells is achieved.  相似文献   
990.
Because multi-wall carbon nanotubes (MWCNTs) have asbestos-like shape and size, concerns about their pathogenicity have been raised. Contaminated metals of MWCNTs may also be responsible for their toxicity. In this study, we employed high-temperature calcined fullerene nanowhiskers (HTCFNWs), which are needle-like nanofibers composed of amorphous carbon having similar sizes to MWCNTs but neither metal impurities nor tubular structures, and investigated their ability to induce production a major proinflammatory cytokine IL-1β via the Nod-like receptor pyrin domain containing 3 (NLRP3)-containing flammasome-mediated mechanism. When exposed to THP-1 macrophages, long-HTCFNW exhibited robust IL-1β production as long and needle-like MWCNTs did, but short-HTCFNW caused very small effect. IL-1β release induced by long-HTCFNW as well as by long, needle-like MWCNTs was abolished by a caspase-1 inhibitor or siRNA-knockdown of NLRP3, indicating that NLRP3-inflammasome-mediated IL-1β production by these carbon nanofibers. Our findings indicate that the needle-like shape and length, but neither metal impurities nor tubular structures of MWCNTs were critical to robust NLRP3 activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号