首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   33篇
  552篇
  2023年   8篇
  2022年   15篇
  2021年   20篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   9篇
  2016年   11篇
  2015年   24篇
  2014年   30篇
  2013年   35篇
  2012年   37篇
  2011年   30篇
  2010年   18篇
  2009年   27篇
  2008年   33篇
  2007年   28篇
  2006年   25篇
  2005年   28篇
  2004年   10篇
  2003年   16篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1995年   6篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1982年   2篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1944年   1篇
  1942年   1篇
排序方式: 共有552条查询结果,搜索用时 0 毫秒
21.
The abundance and functional activity of proteins involved in the formation of the SNARE complex are tightly regulated for efficient exocytosis. Tomosyn proteins are negative regulators of exocytosis. Tomosyn causes an attenuation of insulin secretion by limiting the formation of the SNARE complex. We hypothesized that glucose-dependent stimulation of insulin secretion from β-cells must involve reversing the inhibitory action of tomosyn. Here, we show that glucose increases tomosyn protein turnover. Within 1 h of exposure to 15 mm glucose, ∼50% of tomosyn was degraded. The degradation of tomosyn in response to high glucose was blocked by inhibitors of the proteasomal pathway. Using 32P labeling and mass spectrometry, we showed that tomosyn-2 is phosphorylated in response to high glucose, phorbol esters, and analogs of cAMP, all key insulin secretagogues. We identified 11 phosphorylation sites in tomosyn-2. Site-directed mutagenesis was used to generate phosphomimetic (Ser → Asp) and loss-of-function (Ser → Ala) mutants. The Ser → Asp mutant had enhanced protein turnover compared with the Ser → Ala mutant and wild type tomosyn-2. Additionally, the Ser → Asp tomosyn-2 mutant was ineffective at inhibiting insulin secretion. Using a proteomic screen for tomosyn-2-binding proteins, we identified Hrd-1, an E3-ubiquitin ligase. We showed that tomosyn-2 ubiquitination is increased by Hrd-1, and knockdown of Hrd-1 by short hairpin RNA resulted in increased abundance in tomosyn-2 protein levels. Taken together, our results reveal a mechanism by which enhanced phosphorylation of a negative regulator of secretion, tomosyn-2, in response to insulin secretagogues targets it to degradation by the Hrd-1 E3-ubiquitin ligase.  相似文献   
22.
Eukaryotic elongation factor-2 kinase (eEF2K) relays growth and stress signals to protein synthesis through phosphorylation and inactivation of eukaryotic elongation factor 2 (eEF2). 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) is a widely accepted inhibitor of mammalian eEF2K and an efficacious anti-proliferation agent against different cancer cells. It implied that eEF2K could be an efficacious anticancer target. However, eEF2K siRNA was ineffective against cancer cells including those sensitive to NH125. To test if pharmacological intervention differs from siRNA interference, we identified a highly selective small molecule eEF2K inhibitor A-484954. Like siRNA, A-484954 had little effect on cancer cell growth. We carefully examined the effect of NH125 and A-484954 on phosphorylation of eEF2, the known cellular substrate of eEF2K. Surprisingly, NH125 increased eEF2 phosphorylation, whereas A-484954 inhibited the phosphorylation as expected for an eEF2K inhibitor. Both A-484954 and eEF2K siRNA inhibited eEF2K and reduced eEF2 phosphorylation with little effect on cancer cell growth. These data demonstrated clearly that the anticancer activity of NH125 was more correlated with induction of eEF2 phosphorylation than inhibition of eEF2K. Actually, induction of eEF2 phosphorylation was reported to correlate with inhibition of cancer cell growth. We compared several known inducers of eEF2 phosphorylation including AMPK activators and an mTOR inhibitor. Interestingly, stronger induction of eEF2 phosphorylation correlated with more effective growth inhibition. We also explored signal transduction pathways leading to NH125-induced eEF2 phosphorylation. Preliminary data suggested that NH125-induced eEF2 phosphorylation was likely mediated through multiple pathways. These observations identified an opportunity for a new multipathway approach to anticancer therapies.  相似文献   
23.

Background

Chikungunya is a highly debilitating febrile illness caused by Chikungunya virus, a single-stranded RNA virus, which is transmitted by Aedes aegypti or Aedes albopictus mosquito species. The pathogenesis and host responses in individuals infected with the chikungunya virus are not well understood at the molecular level. We carried out proteomic profiling of serum samples from chikungunya patients in order to identify molecules associated with the host response to infection by this virus.

Results

Proteomic profiling of serum obtained from the infected individuals resulted in identification of 569 proteins. Of these, 63 proteins were found to be differentially expressed (≥ 2-fold) in patient as compared to control sera. These differentially expressed proteins were involved in various processes such as lipid metabolism, immune response, transport, signal transduction and apoptosis.

Conclusions

This is the first report providing a global proteomic profile of serum samples from individuals infected with the chikungunya virus. Our data provide an insight into the proteins that are involved as host response factors during an infection. These proteins include clusterin, apolipoproteins and S100A family of proteins.  相似文献   
24.
Intestinal NPC1L1 transporter is essential for cholesterol absorption and the maintenance of cholesterol homeostasis in the body. NPC1L1 is differentially expressed along the gastrointestinal tract with very low levels in the colon as compared with the small intestine. This study was undertaken to examine whether DNA methylation was responsible for segment-specific expression of NPC1L1. Treatment of mice with 5-azacytidine (i.p.) resulted in a significant dose-dependent increase in NPC1L1 mRNA expression in the colon. The lack of expression of NPC1L1 in the normal colon was associated with high levels of methylation in the area flanking the 3-kb fragment upstream of the initiation site of the mouse NPC1L1 gene in mouse colon as analyzed by EpiTYPER® MassARRAY®. The high level of methylation in the colon was observed in specific CpG dinucleotides and was significantly decreased in response to 5-azacytidine. Similar to mouse NPC1L1, 5-azacytidine treatment also increased the level of human NPC1L1 mRNA expression in the intestinal HuTu-80 cell line in a dose- and time-dependent manner. Silencing the expression of DNA methyltransferase DNMT1, -2, -3A, and -3B alone by siRNA did not affect NPC1L1 expression in HuTu-80 cells. However, the simultaneous attenuation of DNMT1 and -3B expression caused a significant increase in NPC1L1 mRNA expression as compared with control. Also, in vitro methylation of the human NPC1L1 promoter significantly decreased NPC1L1 promoter activity in human intestinal Caco2 cells. In conclusion, our data demonstrated for the first time that DNA methylation in the promoter region of the NPC1L1 gene appears to be a major mechanism underlying differential expression of NPC1L1 along the length of the gastrointestinal tract.  相似文献   
25.
26.
Sphingosine 1-phosphate (S1P), a multifunctional lipid mediator, regulates lymphocyte trafficking, vascular permeability, and angiogenesis by activation of the S1P1 receptor. This receptor is activated by FTY720-P, a phosphorylated derivative of the immunosuppressant and vasoactive compound FTY720. However, in contrast to the natural ligand S1P, FTY720-P appears to act as a functional antagonist, even though the mechanisms involved are poorly understood. In this study, we investigated the fate of endogenously expressed S1P1 receptor in agonist-activated human umbilical vein endothelial cells and human embryonic kidney 293 cells expressing green fluorescent protein-tagged S1P1. We show that FTY720-P is more potent than S1P at inducing receptor degradation. Pretreatment with an antagonist of S1P1, VPC 44116, prevented receptor internalization and degradation. FTY720-P did not induce degradation of internalization-deficient S1P1 receptor mutants. Further, small interfering RNA-mediated down-regulation of G protein-coupled receptor kinase-2 and beta-arrestins abolished FTY720-P-induced S1P1 receptor degradation. These data suggest that agonist-induced phosphorylation of S1P1 and subsequent endocytosis are required for FTY720-P-induced degradation of the receptor. S1P1 degradation is blocked by MG132, a proteasomal inhibitor. Indeed, FTY720-P strongly induced polyubiquitinylation of S1P1 receptor, whereas S1P at concentrations that induced complete internalization was not as efficient, suggesting that receptor internalization is required but not sufficient for ubiquitinylation and degradation. We propose that the ability of FTY720-P to target the S1P1 receptor to the ubiquitinylation and proteasomal degradation pathway may at least in part underlie its immunosuppressive and anti-angiogenic properties.  相似文献   
27.
Needles of seven cultivated clones (C1 – C7) of Juniperus communis at lower altitude and three wild Juniperus species (Jcommunis, Jrecurva and Jindica) at higher altitudes were investigated comparatively for their essential oils (EOs) yields, chemical composition, cytotoxic and antibacterial activities. The EOs yields varied from 0.26 to 0.56% (v/w) among samples. Sixty‐one volatile components were identified by gas chromatography‐mass spectrometry (GC/MS) and quantified using gas chromatography GC (FID) representing 82.5 – 95.7% of the total oil. Monoterpene hydrocarbons (49.1 – 82.8%) dominated in all samples (α‐pinene, limonene and sabinene as major components). Principal component analysis (PCA) of GC data revealed that wild and cultivated Juniperus species are highly distinct due to variation in chemical composition. Jcommunis (wild species) displayed cytotoxicity against SiHa (human cervical cancer), A549 (human lung carcinoma) and A431 (human skin carcinoma) cells (66.4 ± 2.2%, 74.4 ± 1.4% and 57.4 ± 4.0%), respectively, at 200 μg/ml. EOs exhibited better antibacterial activity against Gram‐positive bacteria than against Gram‐negative bacteria with the highest zone of inhibition against Staphylococcus aureus MTCC 96 (19.2 ± 0.7) by clone‐7. As per the conclusion of the findings, EOs of clone‐2, clone‐5 and clone‐7 can be suggested to the growers of lower altitude, as there is more possibility of uses of these EOs in food and medicinal preparations.  相似文献   
28.
Phycocyanin--a major phycobiliprotein constitutively produced by many cyanobacteria--holds several promising applications in diagnostics, biomedical research, and therapeutics. This paper discusses a novel rapid method for the purification of cyanobacterial phycocyanin (C-PC) from Phormidium fragile using hydrophobic interaction chromatography. The protein was extracted and concentrated by grinding under liquid nitrogen and ammonium sulfate fractionation. C-PC was purified by single step hydrophobic interaction chromatography. Purified phycocyanin showed absorbance maximum (lambda(max)) at 624 nm. The criterion of purity (R) achieved was 4.52. Phycocyanin to phycoerythrin and phycocyanin to allophycocyanin purity ratio were 3.85 and 7.49, respectively. The purified protein showed a pI of 5.2 and has two subunits with molecular mass of 19 and 20 kDa each, corresponding to its highly reported alpha and beta subunits. The subunits of phycocyanin were confirmed by their bilin fluorescence using zinc assisted fluorescence enhancement technique. Intact C-PC was of 125 kDa as determined by HPLC, suggested the (alphabeta)(3) subunit assembly. Results obtained by this method in terms of purity, recovery, process time, simplicity, and efficacy are much better than previous methodologies. Purified phycocyanin was further scrutinized for its antioxidant capacity and judged against five non-enzymatic antioxidants by FRAP assay.  相似文献   
29.
30.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号