首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2118篇
  免费   122篇
  2240篇
  2023年   6篇
  2022年   8篇
  2021年   27篇
  2020年   18篇
  2019年   20篇
  2018年   32篇
  2017年   19篇
  2016年   38篇
  2015年   69篇
  2014年   76篇
  2013年   122篇
  2012年   125篇
  2011年   131篇
  2010年   71篇
  2009年   63篇
  2008年   98篇
  2007年   112篇
  2006年   94篇
  2005年   95篇
  2004年   98篇
  2003年   78篇
  2002年   72篇
  2001年   70篇
  2000年   70篇
  1999年   58篇
  1998年   23篇
  1997年   28篇
  1996年   21篇
  1995年   30篇
  1994年   26篇
  1993年   22篇
  1992年   37篇
  1991年   46篇
  1990年   35篇
  1989年   39篇
  1988年   26篇
  1987年   27篇
  1986年   24篇
  1985年   22篇
  1984年   26篇
  1983年   16篇
  1982年   14篇
  1981年   12篇
  1980年   9篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1970年   6篇
  1969年   8篇
排序方式: 共有2240条查询结果,搜索用时 15 毫秒
41.
Acidiphilium multivorum AIU 301 isolated from acid mineral water had strong arsenic resistance. This bacterium harbored a number of plasmids with different molecular sizes. A plasmid of 56 kbp, named pKW301, was isolated from A. multivorum AIU 301. When pKW301 was transferred into Escherichia coli JM109 by electroporation, an E. coli transformant carrying pKW301 exhibited resistance to sodium arsenite, sodium arsenate, and mercuric (II) chloride.  相似文献   
42.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   
43.
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation.  相似文献   
44.
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.  相似文献   
45.
A natural zeolite, easily vitrified and blown at 1300 °C with a high porosity and diam. of 5–100 m, was used to immobilize Saccharomyces cerevisiae at 3.6 × 108 cells ml–1 carrier. When the abilities of natural zeolite carrier were compared with glass beads, the capacity for immobilization and alcohol fermentation activity were, respectively, 2-fold higher and 1.2-fold higher than that of glass beads. Continuous alcohol fermentation was stable for over 21 d without breakage of the carrier.  相似文献   
46.
The subunit composition of RNA polymerase II (polII) was compared between the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. For this purpose, we partially purified the enzyme from S. pombe. Judging from the co-elution profiles in column chromatographies of both the RNA polymerase activity and the two large subunit polypeptides (subunit 1 (prokaryotic β' homologue) and subunit 2 (β homologue)), the minimum number of S. pombe polII-associated polypeptides was estimated to be ten, less than the proposed subunit number of the S. cerevisiae enzyme. These ten putative subunits of S. pombe polII correspond to subunits 1, 2, 3, 5, 6, 7, 8, 10, 11 and 12 of the S. cerevisiae counterparts  相似文献   
47.
Correlations between plasma atrial natriuretic polypeptide (ANP) levels and hemodynamic parameters were studied in the central circulation of 12 patients with angina pectoris. The average plasma ANP level determined in the aorta was found to be 619 +/- 140 pg/ml. The plasma ANP levels showed a significant positive correlation with mean pulmonary arterial (PA) pressure, right ventricular pressure, and with cardiac index. In contrast, there was no significant correlation between plasma ANP levels and other hemodynamic variables including atrial pressure. These results suggest that hemodynamics other than the atrial pressure may have some role in modulating ANP secretion in certain pathological states.  相似文献   
48.
Processing of APP by BACE1 plays a crucial role in the pathogenesis of Alzheimer disease (AD). Recently, the voltage-gated sodium channel (Nav) β4 subunit (β4), an auxiliary subunit of Nav that is supposed to serve as a cell adhesion molecule, has been identified as a substrate for BACE1. However, the biological consequence of BACE1 processing of β4 remains illusive. Here, we report the biological effects of β4 processing by BACE1. Overexpression of β4 in Neuro2a cells promoted neurite extension and increased the number of F-actin rich filopodia-like protrusions. While coexpression of BACE1 together with β4 further accelerated neurite extension, the number of filopodia-like protrusions was reduced. Overexpression of C-terminal fragment of β4 that was generated by BACE1 (β4-CTF) partially recapitulated the results obtained with BACE1 overexpression. These results suggest that the processing of β4 by BACE1 regulates neurite length and filopodia-like protrusion density in neurons.  相似文献   
49.
The plant cell changes its cell wall architecture during growth and development through synthesis and degradation of wall polysaccharides. Changes of chemical components in the cell wall include not only the synthesis and degradation but also the shift of molecular-weight distribution of certain species of the component polysaccharides. The changes in chemical structure, in turn lead to alteration of physical properties of the cell wall. Changes of physical parameters of cell walls obtained by a physical method accord with the biochemical degradation of polysaccharides. The changes in chemical structures of the cell wall are regulated by plant hormones, stress signals and gene expression. The physical and chemical studies of the cell wall have disclosed that degradation and/or depolymerization of wall polysaccahrides causes decrease in viscosity of the cell wall, leading further extension of the cell wall even under the unchanged osmotic relation. Furthermore, cell walls of outer and inner tissues play different regulatory roles in tissue growth and stem strength was governed by the number of cellulose molecules in the cell wall. Recipient of the Botanical Society Award for Young Scientists, 1990.  相似文献   
50.
Toll-like receptors (TLRs) play a key role in linking pathogen recognition with the induction of innate immunity. They have been implicated in the pathogenesis of chronic inflammatory diseases, representing potential targets for prevention/treatment. Vegetable-rich diets are associated with the reduced risk of several inflammatory disorders. In the present study, based on an extensive screening of vegetable extracts for TLR-inhibiting activity in HEK293 cells co-expressing TLR with the NF-κB reporter gene, we found cabbage and onion extracts to be the richest sources of a TLR signaling inhibitor. To identify the active substances, we performed activity-guiding separation of the principal inhibitors and identified 3-methylsulfinylpropyl isothiocyanate (iberin) from the cabbage and quercetin and quercetin 4′-O-β-glucoside from the onion, among which iberin showed the most potent inhibitory effect. It was revealed that iberin specifically acted on the dimerization step of TLRs in the TLR signaling pathway. To gain insight into the inhibitory mechanism of TLR dimerization, we developed a novel probe combining an isothiocyanate-reactive group and an alkyne functionality for click chemistry and detected the probe bound to the TLRs in living cells, suggesting that iberin disrupts dimerization of the TLRs via covalent binding. Furthermore, we designed a variety of iberin analogues and found that the inhibition potency was influenced by the oxidation state of the sulfur. Modeling studies of the iberin analogues showed that the oxidation state of sulfur might influence the global shape of the isothiocyanates. These findings establish the TLR dimerization step as a target of food-derived anti-inflammatory compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号