首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   24篇
  521篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   22篇
  2020年   9篇
  2019年   10篇
  2018年   19篇
  2017年   9篇
  2016年   16篇
  2015年   32篇
  2014年   37篇
  2013年   36篇
  2012年   40篇
  2011年   51篇
  2010年   18篇
  2009年   11篇
  2008年   39篇
  2007年   25篇
  2006年   16篇
  2005年   14篇
  2004年   16篇
  2003年   14篇
  2002年   14篇
  2001年   11篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1991年   4篇
  1990年   1篇
  1989年   7篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有521条查询结果,搜索用时 15 毫秒
491.
Henneguya cartilaginis n. sp. (Myxozoa: Myxosporea) is described from wild masu salmon Oncorhynchus masou masou in Hokkaido, Japan. H. cartilaginis n. sp. produced white cysts, up to 3mm in size, in the head of masu salmon. Infected fish exhibited cranial protrusion due to the cysts. Spores (11.4 × 8.6μm) of H. cartilaginis n. sp. were egg-shaped with the posterior end more pointed and possessed two caudal appendages (34.2μm average length). Histological observations revealed that large plasmodia possessing fine fibrous pseudopodia on the surface developed in the head cartilage. H. cartilaginis n. sp. resembles H. cerebralis, which was described from the cranial cartilage of Kosogol grayling Thymallus nigrescens in Mongolia. However, they were distinguishable by spore morphology. Molecular analysis of the 18S rDNA sequences indicated that H. cartilaginis n. sp. was most closely related to Henneguya zschokkei, H. nuesslini and H. salminicola of salmonid fish, with genetic similarities of 95.3%, 95.1% and 93.9%, respectively. Based on these differences in spore morphology, molecular data, the site of infection and geographical distribution, the present species is considered to be a new species.  相似文献   
492.
ent-Kaurenoic acid (KA) is a key intermediate connected to a phytohormone gibberellin. To date, the general procedure for quantifying KA is by using traditional gas chromatography–mass spectrometry (GC–MS). In contrast, gibberellins, which are more hydrophilic than KA, can be easily quantified by liquid chromatography-tandem mass spectrometry (LC–MS/MS). In this study, we have established a new method to quantify KA by LC–MS/MS by taking advantage of a key feature of KA, namely the lack of fragmentation that occurs in MS/MS when electrospray ionization (ESI) is in the negative mode. Q1 and Q3 were adopted as identical channels for the multiple reaction monitoring of KA. The method was validated by comparing with the results obtained by selected ion monitoring in GC–MS. This new method could be applicable for the quantification of other hydrophobic compounds.  相似文献   
493.
The final instar larva of the bamboo borer, Omphisa fuscidentalis, is in diapause for 9 months from September to the following June. Trehalose and ecdysteroid concentrations in hemolymph were measured through the larval diapause period and in the pupal stage. The ecdysteroid concentration remained low until November, followed by a gradual increase to about 30 ng/ml in May. The trehalose concentration remained at levels ranging between 40-50 mM until May, and decreased to an almost undetectable level after pupation. Since a juvenile hormone analogue (JHA), methoprene, is capable of terminating diapause by stimulating larval prothoracic glands, we examined its effects on ecdysteroid and trehalose concentrations in larvae in December and February. The hemolymph ecdysteroid increased more quickly in February than in December, indicating that the sensitivity of the prothoracic glands to JHA increased towards the end of diapause termination. Similarly, hemolymph trehalose in February decreased within a few days after JHA application, while in December the decrease occurred in the third week. Exogenous 20-hydroxyecdysone (20E) caused a decrease in trehalose concentration in a dose-dependent manner. The effective dose of 20E, however, did not change from January until April, implying that the sensitivity of tissue(s) to 20E may not change until the end of diapause. Taken together, our results suggest that the sensitivities of tissues to JH and 20E do not increase simultaneously with the progress of diapause development and that termination of larval diapause is not associated simply with the restoration of hormone deficiencies.  相似文献   
494.
The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant’s gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance.Gas exchange is a vital activity for higher plants that take up atmospheric CO2 and release oxygen and water vapor through epidermal stomatal pores. Gas exchange affects CO2 uptake, photosynthesis, and biomass production (Horie et al., 2006; Evans et al., 2009; Tanaka et al., 2014). Stomatal conductance (gs) is used as an indicator of gas-exchange capacity (Franks and Farquhar, 2007). Maximum stomatal conductance (gsmax) is controlled mainly by stomatal size and density, two parameters that change with environmental conditions and are negatively correlated with each other (Franks et al., 2009).Given a constant total stomatal pore area, large stomata are generally disadvantageous for gas exchange compared with smaller stomata, because the greater pore depth in larger stomata increases the distance that gas molecules diffuse through. This increased distance is inversely proportional to gsmax (Franks and Beerling, 2009). The fossil record indicates that ancient plants had small numbers of large stomata when atmospheric CO2 levels were high, and falling atmospheric [CO2] induced a decrease in stomatal size and an increase in stomatal density to increase gs for maximum carbon gain (Franks and Beerling, 2009). The positive relationship between a high gs and numerous small stomata also holds true among plants living today under various environmental conditions (Woodward et al., 2002; Galmés et al., 2007; Franks et al., 2009). Additionally, the large stomata of several plant species (e.g. Vicia faba and Arabidopsis [Arabidopsis thaliana]) are often not effective for achieving rapid changes in gs, due to slower solute transport to drive movement caused by their lower membrane surface area-to-volume ratios (Lawson and Blatt, 2014).Stomatal size is strongly and positively correlated with genome size (Beaulieu et al., 2008; Franks et al., 2012; Lomax et al., 2014). Notably, polyploidization causes dramatic increases in nucleus size and stomatal size (Masterson, 1994; Kondorosi et al., 2000). In addition to the negative effects of large stomata on gas exchange (Franks et al., 2009), polyploids may have another disadvantage; del Pozo and Ramirez-Parra (2014) showed that artificially induced tetraploids of Arabidopsis have a reduced stomatal density (stomatal number per unit of leaf area) and a lower stomatal index (stomatal number per epidermal cell number). Moreover, tetraploids of Rangpur lime (Citrus limonia) and Arabidopsis have lower transpiration rates and changes in the expression of genes involved in abscisic acid (ABA), a phytohormone that induces stomatal closure (Allario et al., 2011; del Pozo and Ramirez-Parra, 2014). On the other hand, an increase in the ploidy level of Festuca arundinacea results in an increase in the CO2-exchange rate (Byrne et al., 1981); hence, polyploids may not necessarily have a reduced gas-exchange capacity.Natural accessions provide a wide range of information about mechanisms for adaptation, regulation, and responses to various environmental conditions (Bouchabke et al., 2008; Brosché et al., 2010). Arabidopsis, which is distributed widely throughout the Northern Hemisphere, has great natural variation in stomatal anatomy (Woodward et al., 2002; Delgado et al., 2011). Recently, we investigated leaf temperature changes in response to [CO2] in a large number of Arabidopsis ecotypes (374 ecotypes; Takahashi et al., 2015) and identified the Mechtshausen (Me-0) ecotype among ecotypes with low CO2 responsiveness; Me-0 had a comparatively low leaf temperature, implying a high transpiration rate. In this study, we revealed that Me-0 had a higher gs than the standard ecotype Columbia (Col), despite having tetraploid-dependent larger stomata. Notably, the gs of Me-0 was also higher than that of tetraploid Col, which has stomata as large as those of Me-0. This finding resulted from Me-0 having a higher gs-to-gsmax ratio due to more opened stomata than tetraploid Col. In addition, there were differences in ABA responsiveness, ion homeostasis, and gene expression profiles in guard cells between Me-0 and tetraploid Col, which may influence their stomatal opening. Despite the common trend of smaller stomata with higher gas-exchange capacity, the results with Me-0 confirm the theoretical possibility that larger stomata can also achieve higher stomatal conductance if pore area increases sufficiently.  相似文献   
495.
The role of human leukocyte antigen (HLA) class II molecules on non-antigen presenting cells has been a matter of controversy. We recently reported that ligation of HLA-DR molecule with anti-HLA-DR antibodies (L243) and/or antigenic peptide/T cell receptor complex resulted in a secretion of several chemokines such as RANTES. In the present study, we aimed to detect putative signal transduction pathway leading to RANTES production from fibroblasts when the DR molecules were ligated with L243. Protein tyrosine kinase inhibitor (GF109203X) suppressed RANTES expression in a dose dependent manner for up to 50% from gingival fibroblasts (GF), while protein kinase C inhibitor (genistein) had no inhibitory effect. Ligation of DR molecules with L243 resulted in tyrosine phosphorylation of 54 kDa cellular protein. Thus, we suspected that either Jun N-terminal kinase-2 (JNK-2) or Src family proteins were involved in HLA-DR-mediated signaling. JNK inhibitor (SP600125), but not Src inhibitor (PP2), suppressed both L243 stimulated RANTES mRNA expression and protein secretion. The maximum inhibition for RANTES production by SP600125 was more than 80%. Additionally, JNK inhibitor nearly completely blocked tumor necrosis factor-alpha (TNF-alpha)-induced RANTES production in GF. Furthermore, ligation of GF HLA-DR with L243 induced selective phosphorylation of JNK-2. We concluded that JNK-2 was one of the HLA-DR-mediated signal transduction pathways.  相似文献   
496.
The Zrt/Irt-like protein (ZIP) family of transporter proteins is involved in the uptake of essential metal elements in plants. Two homologous ZIP genes from Thlaspi japonicum, TjZNT1 and TjZNT2, encode products that share high amino acid sequence similarity except at the N-terminus and the cytoplasmic loop between transmembrane domains III and IV, and that have been shown to be Zn(2+) and Mn(2+) transporters, respectively. To identify the region that determines the ion selectivity of these transporters, we constructed a series of TjZNT1 and TjZNT2 chimeric genes and assayed for the Zn(2+) uptake of yeast cells expressing them. As a result, the extracellular N-terminal ends were identified as regions involved in Zn(2+) selectivity. TjZNT2 possesses a 36 amino acid hydrophilic extension at its N-terminus that is absent in native TjZNT1, and a mutant TjZNT2 lacking the N-terminal extension was shown to possess Zn(2+) uptake activity. This suggests that the extended N-terminal region inhibits Zn(2+) transport by TjZNT2. Further studies showed that it is the first 25 amino acid region of the N-terminus that is important for the inhibition of Zn(2+) transport. Furthermore, the N-terminal truncated TjZNT2 lacked Mn(2+) uptake activity. These findings suggest that the N-terminal region is a novel substrate selector in the ZIP family of transporters.  相似文献   
497.
Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation.  相似文献   
498.
Carbon dioxide (CO2) is an essential substrate for photosynthesis in plants. CO2 is absorbed mainly through the stomata in land plants because all other aerial surfaces are covered by a waxy layer called the cuticle. The cuticle is an important barrier that protects against extreme water loss; however, this anaerobic layer limits CO2 uptake. Simply, in the process of adapting to a terrestrial environment, plants have acquired drought tolerance in exchange for reduced CO2 uptake efficiency. To evaluate the extent to which increased cuticle permeability enhances CO2 uptake efficiency, we investigated the CO2 assimilation rate, carbon content, and dry weight of the Arabidopsis (Arabidopsis thaliana) mutant excessive transpiration1 (extra1), whose cuticle is remarkably permeable to water vapor. We isolated the mutant as a new allele of ACETYL-COA CARBOXYLASE1, encoding a critical enzyme for fatty acid synthesis, thereby affecting cuticle wax synthesis. Under saturated water vapor conditions, the extra1 mutant demonstrated a higher CO2 assimilation rate, carbon content, and greater dry weight than did the wild-type plant. On the other hand, the stomatal mutant slow-type anion channel-associated1, whose stomata are continuously open, also exhibited a higher CO2 assimilation rate than the wild-type plant; however, the increase was only half of the amount exhibited by extra1. These results indicate that the efficiency of CO2 uptake via a permeable cuticle is greater than the efficiency via stomata and confirm that land plants suffer a greater loss of CO2 uptake efficiency by developing a cuticle barrier.

To absorb carbon dioxide (CO2) for photosynthesis, land plants expose their wet surfaces to a dry atmosphere and suffer evaporative water loss as a consequence (Hall et al., 1993). As too much water loss would result in dehydration, plants cover most of their aerial surfaces with a relatively impermeable layer, called the cuticle, and take in CO2 mainly through stomatal pores, which make up only about 2% per a leaf area (Willmer and Fricker, 1996). In other words, the cuticle provides drought tolerance to plants in exchange for reduced efficiency in CO2 uptake.The cuticle is a continuous membrane consisting of a polymer matrix (cutin), polysaccharides, and organic solvent‐soluble lipids (cuticular waxes; Holloway, 1982; Jeffree, 1996; Riederer and Schreiber, 2001). The cuticle is an important structure to protect plants against excess drought, high temperature, strong UV radiation, pathogens, and harmful insects (Kerstiens, 1996a, 1996b; Burghardt and Riederer, 2006; Riederer and Müller, 2006; Domínguez et al., 2011; Yeats and Rose, 2013). The cuticle limits the transpiration through plant surfaces other than through the stomatal pores to <10% of the total (Mohr and Schopfer, 1995). On the other hand, this impermeable layer also strongly restricts CO2 influx. Boyer et al. (1997) and Boyer (2015a, 2015b) reported a lower conductance for CO2 than for water vapor in cuticles of intact leaves of grape (Vitis vinifera) and sunflower (Helianthus annuus) due to the differences in molecular size and diffusion paths between the two gases. However, although many studies have explored the water permeability of cuticles in various conditions and species (Kerstiens, 1996a; Riederer and Müller, 2006; Kosma et al., 2009; Schreiber and Schönherr, 2009), much less attention has been directed to CO2, despite its substantial role in photosynthesis.In this study, we verified the hypothesis that plants could absorb CO2 more efficiently under non-drought stress conditions if their cuticles are more permeable. In addition, we also investigated the extent to which a permeable cuticle can enhance CO2 uptake efficiency. To verify the hypothesis, we investigated whether the CO2 uptake efficiency is increased in a mutant with a high cuticle permeability. For this research, we isolated an Arabidopsis (Arabidopsis thaliana) mutant named excessive transpiration1 (extra1), which exhibited marked evaporative water loss due to an increased cuticle permeability caused by a new allele of ACETYL-COA CARBOXYLASE1 (ACC1). ACC1 encodes a critical enzyme for the synthesis of malonyl-CoA, an essential substrate for fatty acid synthesis (Baud et al., 2003). To evaluate CO2 uptake efficiency, we investigated CO2 assimilation rate, carbon content, and dry weight of the extra1 mutant and compared them to that of wild-type plants as well as that of another mutant, slow-type anion channel-associated1 (slac1) with continuously open stomata (Negi et al., 2008; Vahisalu et al., 2008). Our results reveal that the increased cuticle permeability strongly and constantly enhances CO2 uptake efficiency under non-drought stress conditions.  相似文献   
499.
The properties of two anticomplementic factors isolated by CM-Sepharose chromatography from the basic non-adsorbed on DEAE-Sepharose fraction of the Central Asian cobra Naja naja oxiana venom, were studied. Of these three factors (CFB-I, CFB-II and CFB-III) the latter had been characterized earlier. CFB-I was shown to be a protein with an N-terminal Asp and a molecular mass of about 39 kDa (data from gel chromatography); its content in the venom is 3.6 mg/g of dry venom. The protein inhibits mainly the classical pathway of the complement activation, being bound to component C4 (Ki = 9 nM). CFB-I seems to be analogous to the CI inhibitor from the venom of the Naja haje cobra. An analysis of the N-terminal sequence of CFB-II showed it to be identical to the earlier characterized cytotoxin I. CFB-I inhibits the formation of C3 convertase with Ki = 2.2-2.8 microM by way of binding to C4b and thus interfering with the component C2 sorption.  相似文献   
500.
An affinity sorbent comprising macroporous glass coated with the polymer with the polymer with immobilized immunoglobulin IgG was used for the isolation from human serum of the first component of the complement and for its separation into subcomponents C1r, C1s and C1q by the one-step procedure. Serum C1 was quantitatively bound to the sorbent at 0 degrees C. The unbound part of the serum can be used as a R1 reagent for determining the hemolytic activity of C1. After activation of bound C1 by heating (30 degrees C, 40 min) the activated subcomponent C1r is eluted from the sorbent. Stepwise elution with EDTA at pH 7.4 or with EDTA + 1 M NaCl at pH 8.5 results in a selective and quantitative elution of the activated subcomponent C1s and subcomponent C1q. Stepwise elution of C1 subcomponents from the affinity sorbent after activation reflects the process of C1 breakdown following its activation on immune complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号