全文获取类型
收费全文 | 497篇 |
免费 | 24篇 |
专业分类
521篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 6篇 |
2021年 | 22篇 |
2020年 | 9篇 |
2019年 | 10篇 |
2018年 | 19篇 |
2017年 | 9篇 |
2016年 | 16篇 |
2015年 | 32篇 |
2014年 | 37篇 |
2013年 | 36篇 |
2012年 | 40篇 |
2011年 | 51篇 |
2010年 | 18篇 |
2009年 | 11篇 |
2008年 | 39篇 |
2007年 | 25篇 |
2006年 | 16篇 |
2005年 | 14篇 |
2004年 | 16篇 |
2003年 | 14篇 |
2002年 | 14篇 |
2001年 | 11篇 |
2000年 | 4篇 |
1999年 | 6篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 7篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1970年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有521条查询结果,搜索用时 0 毫秒
411.
Blood sugar is an essential energy source for growth and development and is maintained at a constant level through precise regulation of formation and utilization. Sugars are produced from dietary carbohydrates by enzymatic hydrolysis in the digestive tract, which are under the homeostatic control of paracrine and prandial mechanisms in mammals. Here, we show that dietary carbohydrates hydrolyzing activity of the digestive tract is developmentally regulated by the steroid hormone ecdysone in the silkworm, Bombyx mori. The dietary carbohydrates hydrolyzing activity remained high throughout the last larval period and then decreased to negligible levels until the pupal period. However, dietary carbohydrates digestive activities were constitutively high when the steroidogenic organ, prothoracic glands were ablated. The prothoracic glands produced and released a large amount of ecdysone at the end of the larval period, suggesting that ecdysone is responsible for the decrease in dietary carbohydrates hydrolyzing activity. In fact, ecdysone decreased the activity to negligible levels in silkworms lacking the prothoracic glands. The present results indicate that the dietary carbohydrates hydrolyzing activity is regulated by ecdysone and that an increase in ecdysone titer decreases that activity at the end of the larval period, suggesting that ecdysone is essential for metabolic coordination during development. 相似文献
412.
413.
414.
Oshima K Ishii Y Kakizawa S Sugawara K Neriya Y Himeno M Minato N Miura C Shiraishi T Yamaji Y Namba S 《PloS one》2011,6(8):e23242
Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the "host switching" between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to "host switching" between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of "host switching" mechanism may contribute to the development of novel pest controls. 相似文献
415.
Kawanami D Matoba K Kanazawa Y Ishizawa S Yokota T Utsunomiya K 《Biochemical and biophysical research communications》2011,411(4):798-803
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis. 相似文献
416.
Takimoto T Yoshida M Hirata H Kashiwa Y Takeda Y Goya S Kijima T Kumagai T Tachibana I Kawase I 《Biochemical and biophysical research communications》2012,420(1):84-90
The α,β-unsaturated aldehyde 4-hydroxy-2-nonenal (4-HNE) is an endogenous product of oxidative stress that is found at increased levels in the lungs of patients with chronic obstructive pulmonary disease (COPD) and animal models of this lung disorder. In the present study, levels of 4-HNE adducts were increased in two different mouse models of COPD. Challenging lungs with 4-HNE enlarged the airspace and induced goblet cell metaplasia of the airways in mice, two characteristics of COPD. 4-HNE induced the accumulation of inflammatory cells expressing high levels of MMP-2 and MMP-9. Our results indicate that 4-HNE production during oxidative stress is a key pathway in the pathogenesis of COPD. 相似文献
417.
418.
Mostafa Abdelrahman Sho Hirata Shin-ichi Ito Naoki Yamauchi 《Bioscience, biotechnology, and biochemistry》2013,77(7):1112-1122
To investigate the involvement of Allium roylei metabolites in the plant’s defenses, a comprehensive analysis of the content of cysteine sulfoxides, flavonols, polyphenols, ascorbic acid, and saponins was carried out in the various organs of this species. Metabolomics high performance liquid chromatography (HPLC), spectral-based analysis, and histochemcial studies have given important insight to the validity of saponins as a key component involved in plant protection. The root-basal stem, bulb, and leaf extracts exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with inhibition concentration (IC50) ranging from 0.649 to 0.757?mg/mL. The antimicrobial properties of the saponin and flavonoid crude extracts were evaluated. The saponin extracts demonstrated significant antifungal activity depending on the applied concentration, and the growth inhibition rate of the tested fungal pathogens ranged from 1.07 to 47.76%. No appreciable antibacterial activity was recorded in the same sample. 相似文献
419.
Kazuyoshi Ukena Eiko Iwakoshi-Ukena Shusuke Taniuchi Yuki Bessho Sho Maejima Keiko Masuda Kenshiro Shikano Kunihiro Kondo Megumi Furumitsu Tetsuya Tachibana 《Biochemical and biophysical research communications》2014
To find novel neuropeptide and/or peptide hormone precursors in the avian brain, we performed a cDNA subtractive screen of the chicken hypothalamic infundibulum, which contains one of the feeding and neuroendocrine centers. After sequencing 596 clones, we identified a novel cDNA encoding a previously unknown protein. The deduced precursor protein consisted of 182 amino acid residues, including one putative small secretory protein of 80 amino acid residues. This small protein was flanked at the N-terminus by a signal peptide and at the C-terminus by a glycine amidation signal and a dibasic amino acid cleavage site. Because the predicted C-terminal amino acids of the small protein were Gly-Leu-NH2, the small protein was named neurosecretory protein GL (NPGL). Quantitative RT-PCR analysis demonstrated specific expression of the NPGL precursor mRNA in the hypothalamic infundibulum. Furthermore, the mRNA levels in the hypothalamic infundibulum increased during post-hatching development. In situ hybridization analysis showed that the cells containing the NPGL precursor mRNA were localized in the medial mammillary nucleus and infundibular nucleus within the hypothalamic infundibulum of 8- and 15-day-old chicks. Subcutaneous infusion of NPGL in chicks increased body weight gain without affecting food intake. To our knowledge, this is the first report to describe the identification and localization of the NPGL precursor mRNA and the function of its translated product in animals. Our findings indicate that NPGL may participate in the growth process in chicks. 相似文献
420.
Sho Okamoto Kanji Furuya Shingo Nozaki Keita Aoki Hironori Niki 《Eukaryotic cell》2013,12(9):1235-1243
Many fungi respond to light and regulate fungal development and behavior. A blue light-activated complex has been identified in Neurospora crassa as the product of the wc-1 and wc-2 genes. Orthologs of WC-1 and WC-2 have hitherto been found only in filamentous fungi and not in yeast, with the exception of the basidiomycete pathogenic yeast Cryptococcus. Here, we report that the fission yeast Schizosaccharomyces japonicus responds to blue light depending on Wcs1 and Wcs2, orthologs of components of the WC complex. Surprisingly, those of ascomycete S. japonicus are more closely related to those of the basidiomycete. S. japonicus reversibly changes from yeast to hyphae in response to environmental stresses. After incubation at 30°C, a colony of yeast was formed, and then hyphal cells extended from the periphery of the colony. When light cycles were applied, distinct dark- and bright-colored hyphal cell stripes were formed because the growing hyphal cells had synchronously activated cytokinesis. In addition, temperature cycles of 30°C for 12 h and 35°C for 12 h or of 25°C for 12 h and 30°C for 12 h during incubation in the dark induced a response in the hyphal cells similar to that of light. The stripe formation of the temperature cycles was independent of the wcs genes. Both light and temperature, which are daily external cues, have the same effect on growing hyphal cells. A dual sensing mechanism of external cues allows organisms to adapt to daily changes of environmental alteration. 相似文献