首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   890篇
  免费   107篇
  国内免费   4篇
  1001篇
  2024年   1篇
  2023年   4篇
  2022年   14篇
  2021年   35篇
  2020年   16篇
  2019年   22篇
  2018年   22篇
  2017年   17篇
  2016年   35篇
  2015年   53篇
  2014年   47篇
  2013年   62篇
  2012年   73篇
  2011年   82篇
  2010年   44篇
  2009年   43篇
  2008年   60篇
  2007年   76篇
  2006年   54篇
  2005年   51篇
  2004年   57篇
  2003年   28篇
  2002年   34篇
  2001年   5篇
  2000年   1篇
  1999年   6篇
  1998年   13篇
  1997年   5篇
  1996年   5篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1969年   2篇
排序方式: 共有1001条查询结果,搜索用时 0 毫秒
141.
142.
Peptide toxins found in a wide array of venoms block K+ channels, causing profound physiological and pathological effects. Here we describe the first functional K+ channel-blocking toxin domain in a mammalian protein. MMP23 (matrix metalloprotease 23) contains a domain (MMP23TxD) that is evolutionarily related to peptide toxins from sea anemones. MMP23TxD shows close structural similarity to the sea anemone toxins BgK and ShK. Moreover, this domain blocks K+ channels in the nanomolar to low micromolar range (Kv1.6 > Kv1.3 > Kv1.1 = Kv3.2 > Kv1.4, in decreasing order of potency) while sparing other K+ channels (Kv1.2, Kv1.5, Kv1.7, and KCa3.1). Full-length MMP23 suppresses K+ channels by co-localizing with and trapping MMP23TxD-sensitive channels in the ER. Our results provide clues to the structure and function of the vast family of proteins that contain domains related to sea anemone toxins. Evolutionary pressure to maintain a channel-modulatory function may contribute to the conservation of this domain throughout the plant and animal kingdoms.  相似文献   
143.
A plant-based system for continuous production of monoclonal antibodies based on the secretion of immunoglobulin complexes from plant roots into a hydroponic medium (rhizosecretion) was engineered to produce high levels of single-chain and full-size immunoglobulins. Replacing the original signal peptides of monoclonal antibodies with a plant-derived calreticulin signal increased the levels of antibody yield 2-fold. Cosecretion of Bowman-Birk Ser protease inhibitor reduced degradation of the immunoglobulin complexes in the default secretion pathway and further increased antibody production to 36.4 microg/g root dry weight per day for single-chain IgG1 and 21.8 microg/g root dry weight per day for full-size IgG4 antibodies. These results suggest that constitutive cosecretion of a protease inhibitor combined with the use of the plant signal peptide and the antibiotic marker-free transformation system offers a novel strategy to achieve high yields of complex therapeutic proteins secreted from plant roots.  相似文献   
144.
The growing collection of publicly available high-throughput data provides an invaluable resource for generating preliminary in silico data in support of novel hypotheses. In this study we used a cross-dataset meta-analysis strategy to identify novel candidate genes and genetic variations relevant to paclitaxel/carboplatin-induced myelosuppression and neuropathy. We identified genes affected by drug exposure and present in tissues associated with toxicity. From ten top-ranked genes 42 non-synonymous single nucleotide polymorphisms (SNPs) were identified in silico and genotyped in 94 cancer patients treated with carboplatin/paclitaxel. We observed variations in 11 SNPs, of which seven were present in a sufficient frequency for statistical evaluation. Of these seven SNPs, three were present in ABCA1 and ATM, and showed significant or borderline significant association with either myelosuppression or neuropathy. The strikingly high number of associations between genotype and clinically observed toxicity provides support for our data-driven computations strategy to identify biomarkers for drug toxicity.  相似文献   
145.
146.
Phenotypes that appear to be conserved could be maintained not only by strong purifying selection on the underlying genetic systems, but also by stabilizing selection acting via compensatory mutations with balanced effects. Such coevolution has been invoked to explain experimental results, but has rarely been the focus of study. Conserved expression driven by the unc-47 promoters of Caenorhabditis elegans and C. briggsae persists despite divergence within a cis-regulatory element and between this element and the trans-regulatory environment. Compensatory changes in cis and trans are revealed when these promoters are used to drive expression in the other species. Functional changes in the C. briggsae promoter, which has experienced accelerated sequence evolution, did not lead to alteration of gene expression in its endogenous environment. Coevolution among promoter elements suggests that complex epistatic interactions within cis-regulatory elements may facilitate their divergence. Our results offer a detailed picture of regulatory evolution in which subtle, lineage-specific, and compensatory modifications of interacting cis and trans regulators together maintain conserved gene expression patterns.  相似文献   
147.

Background

It becomes increasingly evident that nuclesomes are far from being identical to each other. This nucleosome diversity is due partially to the existence of histone variants encoded by separate genes. Among the known histone variants the less characterized are H2A.Bbd and different forms of macroH2A. This is especially true in the case of H2A.Bbd as there are still no commercially available antibodies specific to H2A.Bbd that can be used for chromatin immunoprecipitation (ChIP).

Methods

We have generated HeLa S3 cell lines stably expressing epitope-tagged versions of macroH2A1.1, H2A.Bbd or canonical H2A and analyzed genomic distribution of the tagged histones using ChIP-on-chip technique.

Results

The presence of histone H2A variants macroH2A1.1 and H2A.Bbd has been analyzed in the chromatin of several segments of human chromosomes 11, 16 and X that have been chosen for their different gene densities and chromatin status. Chromatin immunoprecipitation (ChIP) followed by hybridization with custom NimbleGene genomic microarrays demonstrated that in open chromatin domains containing tissue-specific along with housekeeping genes, the H2A.Bbd variant was preferentially associated with the body of a subset of transcribed genes. The macroH2A1.1 variant was virtually absent from some genes and underrepresented in others. In contrast, in closed chromatin domains which contain only tissue-specific genes inactive in HeLa S3 cells, both macroH2A1.1 and H2A.Bbd histone variants were present and often colocalized.

Conclusions

Genomic distribution of macro H2A and H2A.Bbd does not follow any simple rule and is drastically different in open and closed genomic domains.  相似文献   
148.
The mechanism of mitotic chromosome condensation is poorly understood, but even less is known about the mechanism of formation of the primary constriction, or centromere. A proteomic analysis of mitotic chromosome scaffolds led to the identification of CENP-V, a novel kinetochore protein related to a bacterial enzyme that detoxifies formaldehyde, a by-product of histone demethylation in eukaryotic cells. Overexpression of CENP-V leads to hypercondensation of pericentromeric heterochromatin, a phenotype that is abolished by mutations in the putative catalytic site. CENP-V depletion in HeLa cells leads to abnormal expansion of the primary constriction of mitotic chromosomes, mislocalization and destabilization of the chromosomal passenger complex (CPC) and alterations in the distribution of H3K9me3 in interphase nucleoplasm. CENP-V-depleted cells suffer defects in chromosome alignment in metaphase, lagging chromosomes in anaphase, failure of cytokinesis and rapid cell death. CENP-V provides a novel link between centromeric chromatin, the primary constriction and the CPC.  相似文献   
149.
150.
Selective inhibitors of cyclooxygenase-2 (COX-2), such as rofecoxib (Vioxx), celecoxib (Celebrex), and valdecoxib (Bextra), have been developed for treating arthritis and other musculoskeletal complaints. Selective inhibition of COX-2 over COX-1 results in preferential decrease in prostacyclin production over thromboxane A2 production, thus leading to less gastric effects than those seen with nonselective COX inhibitors such as acetylsalicylic acid (aspirin). Here we show a novel effect of celecoxib via a mechanism that is independent of COX-2 inhibition. The drug inhibited the delayed rectifier (Kv2) potassium channels from Drosophila, rats, and humans and led to pronounced arrhythmia in Drosophila heart and arrhythmic beating of rat heart cells in culture. These effects occurred despite the genomic absence of cyclooxygenases in Drosophila and the failure of acetylsalicylic acid, a potent inhibitor of both COX-1 and COX-2, to inhibit rat Kv2.1 channels. A genetically null mutant of Drosophila Shab (Kv2) channels reproduced the cardiac effect of celecoxib, and the drug was unable to further enhance the effect of the mutation. These observations reveal an unanticipated effect of celecoxib on Drosophila hearts and on heart cells from rats, implicating the inhibition of Kv2 channels as the mechanism underlying this effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号