首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   31篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   17篇
  2014年   7篇
  2013年   19篇
  2012年   20篇
  2011年   18篇
  2010年   7篇
  2009年   7篇
  2008年   14篇
  2007年   9篇
  2006年   27篇
  2005年   17篇
  2004年   16篇
  2003年   23篇
  2002年   18篇
  2001年   2篇
  2000年   3篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   8篇
  1981年   9篇
  1980年   9篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1973年   7篇
  1972年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
131.
Cutting edge: Membrane nanotubes connect immune cells   总被引:13,自引:0,他引:13  
We present evidence that nanotubular highways, or membrane nanotubes, facilitate a novel mechanism for intercellular communication in the immune system. Nanotubes were seen to connect multiple cells together and were readily formed between a variety of cell types, including human peripheral blood NK cells, macrophages, and EBV-transformed B cells. Nanotubes could be created upon disassembly of the immunological synapse, as cells move apart. Thus, nanotubular networks could be assembled from transient immunological synapses. Nanotubes were seen to contain GFP-tagged cell surface class I MHC protein expressed in one of the connected cells. Moreover, GPI-conjugated to GFP originating from one cell was transferred onto the surface of another at the connection with a nanotube. Thus, nanotubes can traffic cell surface proteins between immune cells over many tens of microns. Determining whether there are physiological functions for nanotubes is an intriguing new goal for cellular immunology.  相似文献   
132.
133.
We show that the three core histones H2A, H3 and H4 can transverse lipid bilayers of large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs). In contrast, the histone H2B, although able to bind to the liposomes, fails to penetrate the unilamellar and the multilamellar vesicles. Translocation across the lipid bilayer was determined using biotin-labeled histones and an ELISA-based system. Following incubation with the liposomes, external membrane-bound biotin molecules were neutralized by the addition of avidin. Penetrating biotin-histone conjugates were exposed by Triton treatment of the neutralized liposomes. The intraliposomal biotin-histone conjugates, in contrast to those attached only to the external surface, were attached to the detergent lysed lipid molecules. Thus, biotinylated histone molecules that were exposed only following detergent treatment of the liposomes were considered to be located at the inner leaflet of the lipid bilayers. The penetrating histone molecules failed to mediate translocation of BSA molecules covalently attached to them. Translocation of the core histones, including H2B, was also observed across mycoplasma cell membranes. The extent of this translocation was inversely related to the degree of membrane cholesterol. The addition of cholesterol also reduced the extent of histone penetration into the MLVs. Although able to bind biotinylated histones, human erythrocytes, erythrocyte ghosts and Escherichia coli cells were impermeable to them. Based on the present and previous data histones appear to be characterized by the same features that characterize cell penetrating peptides and proteins (CPPs).  相似文献   
134.
Angiotensin-converting enzyme (ACE)-2 is a newly described enzyme with antagonistic effects to those of the classical ACE (ACE-1). Both ANG II and aldosterone play an important role in the pathophysiology of congestive heart failure (CHF) and in the adverse cardiac remodeling during its development. In this study, we examined the effects of experimental CHF induced by an aortocaval fistula (ACF) and of its treatment with ANG II and aldosterone inhibitors on the relative levels of ACE-1 and ACE-2. We also compared the effects of spironolactone, an aldosterone antagonist, and eprosartan, an ANG II receptor antagonist, on heart hypertrophy and fibrosis in rats with ACF. Spironolactone (15 mg x kg(-1) x day(-1) ip, via minipump) or eprosartan (5 mg x kg(-1) x day(-1) ip, via minipump) was administered into rats with ACF for 14 and 28 days. Specific antibodies were used to determine the protein levels of myocardial ACE-1 and ACE-2. ACF increased the cardiac levels of ACE-1 and decreased those of ACE-2. Heart-to-body weight ratio significantly increased from 0.30 +/- 0.004% in sham-operated controls to 0.50 +/- 0.018% and 0.56 +/- 0.044% (P < 0.001) in rats with ACF, 2 and 4 wk after surgery, respectively, in association with increased plasma levels of aldosterone. The area occupied by collagen increased from 2.33 +/- 0.27% to 6.85 +/- 0.65% and 8.03 +/- 0.93% (P < 0.01), 2 and 4 wk after ACF, respectively. Both spironolactone and eprosartan decreased cardiac mass and collagen content and reversed the shift in ACE isoforms. ACF alters the ratio between ACE isoforms in a manner that increases local ANG II and aldosterone levels. Early treatment with both ANG II and aldosterone antagonists is effective in reducing this effect. Thus ACE isoform shift may represent an important component of the development of cardiac remodeling in response to hemodynamic overload, and its correction may contribute to the beneficial therapeutic effects of renin-angiotensin-aldosterone system inhibitors.  相似文献   
135.
The initiation of the bio-geochemical scenario described in Part I serves in the present work as the basis for computer modeling, where the central process of the simulation algorithm, i.e., peptide-catalyzed oligomeric growth, is based on mass action equations. The computer model starts with a minimal system in which catalyzed growth processes of proto-RNA templates and small peptides take place, starting from their building blocks. The emerging populations of random oligomers also include a very small fraction of proto-tRNAs and a small fraction of catalytic peptides. Using simplifying assumptions regarding catalyzed proto-RNA template-replication, as well as selectivity of certain molecules and processes, the proportion of proto-tRNA in the proto-RNA molecular population increases rapidly; it is followed by TSD peptide synthesis, based on an ad hoc genetic code and specific peptide catalysts allocated for this synthesis. Consequently, a feedback system is initiated in which TSD peptides involved in the relevant catalytic reactions of the TSD syntheses also start to accumulate. The initial sporadic formation of TSD peptides is thus replaced gradually by cycles of positive feedback and autocatalysis characterized by accumulation of catalytic peptides and Proto-tRNAs and TSD-Reaction-Takeover. The model system which can be considered a toy model can synthesize its templates and catalysts under a wide range of reaction parameters and initial concentrations, thus demonstrating a robustness which is essential for molecular evolution processes. The critical stage of the buildup of a molecular mechanism for the initiation of a minimal TSD reaction cycle has thus been described; because of the centrality of TSD reaction cycles in biology, it is assumed to be central also in the origin of life processes.  相似文献   
136.
137.
Abstract: Formation of a functional neuromuscular junction (NMJ) involves the biosynthesis and transport of numerous muscle-specific proteins, among them the acetylcholine-hydrolyzing enzyme acetylcholinesterase (AChE). To study the mechanisms underlying this process, we have expressed DMA encoding human AChE downstream of the cytomegalovirus promoter in oocytes and developing embryos of Xenopus laevis. Recombinant human AChE (rHAChE) produced in Xenopus was biochemically and immunochemically indistinguishable from native human AChE but clearly distinguished from the endogenous frog enzyme. In microinjected embryos, high levels of catalytically active rHAChE induced a transient state of over-expression that persisted for at least 4 days postfertilization. rHAChE appeared exclusively as nonassembled monomers in embryos at times when endogenous Xenopus AChE displayed complex oligomeric assembly. Nonetheless, cell-associated rHAChE accumulated in myotomes of 2-and 3-day-old embryos within the same sub-cellular compartments as native Xenopus AChE. NMJs from 3-day-old DNA-injected embryos displayed fourfold or greater overexpression of AChE, a 30% increase in postsynaptic membrane length, and increased folding of the postsynaptic membrane. These findings indicate that an evolutionarily conserved property directs the intracellular trafficking and synaptic targeting of AChE in muscle and support a role for AChE in vertebrate synaptogenesis.  相似文献   
138.
Summary Heat-inactivated (60°C, 45 min)Mycoplasma capricolum strain JR cells activate murine macrophages to secrete high levels of tumór necrosis factor (TNF) and to lyse tumor target cells efficiently. Fractionation of the intactM. capricolum cells, obtained from cells harvested at the exponential phase of growth, shows that their capacity to induce TNF secretion by macrophage resides exclusively in the membrane fraction. The macrophage-mediated cytolysis following activation byM. capricolum membranes was significantly inhibited by specific anti-recombinant murine TNF antibodies.M. capricolum membranes are a potent inducer of TNF as the commonly used bacterial lipopolysaccharide, indicated by their doseresponse curve for macrophage activation. Our study further showed thatM. capricolum membranes and lipopolysaccharide synergize to augment TNF secretion by C57BL/6-derived macrophages markedly. Moreover, lipopolysaccharide-unresponsive C3H/HeJ-derived macrophages, were pronouncedly activated byM. capricolum membranes, which do not contain lipopolysaccharide. These findings suggest that the mechanism by whichM. capricolum membranes activate macrophages differs from that of lipopolysaccharide. Results of preliminary experiments show that human monocytes as well secrete TNF following activation byM. capricolum membranes. Thus, in contrast with the prohibitive toxicity of lipopolysaccharide to animals and humans,M. capricolum membranes, which contain no lipopolysaccharide and are nontoxic in nature, may be of therapeutic value in the treatment of cancer.This study was supported by the Ernst David Bergmann Fund of the Hebrew University, Jerusalem, the Concern II Foundation for Cancer Research, Los Angeles, and the Society of Research Associates of the Lautenberg Center  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号