首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   33篇
  2020年   2篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   17篇
  2014年   7篇
  2013年   20篇
  2012年   21篇
  2011年   18篇
  2010年   7篇
  2009年   7篇
  2008年   14篇
  2007年   10篇
  2006年   27篇
  2005年   17篇
  2004年   16篇
  2003年   23篇
  2002年   18篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   8篇
  1981年   9篇
  1980年   9篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1973年   7篇
  1972年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有364条查询结果,搜索用时 15 毫秒
21.
22.
Silver grids are attractive for replacing indium tin oxide as flexible transparent conductors. This work aims to improve the electrochemical stability of silver‐based transparent conductors. A silver grid/PEDOT:PSS hybrid film with high conductivity and excellent stability is successfully fabricated. Its functionality for flexible electrochromic applications is demonstrated by coating one layer of WO3 nanoparticles on the silver grid/PEDOT:PSS hybrid film. This hybrid structure presents a large optical modulation of 81.9% at 633 nm, fast switching, and high coloration efficiency (124.5 cm2 C?1). More importantly, an excellent electrochemical cycling stability (sustaining 79.1% of their initial transmittance modulation after 1000 cycles) and remarkable mechanical flexibility (optical modulation decay of only 7.5% after 1200 compressive bending cycles) is achieved. A novel smart supercapacitor is presented that functions as a regular energy‐storage device and simultaneously monitors the level of stored energy by a rapid and reversible color variation even at high current charge/discharge conditions. The film sustains an optical modulation of 87.7% and a specific capacitance of 67.2% at 10 A g?1 compared to their initial value at a current density of 1 A g?1. The high‐performance silver grid/PEDOT:PSS hybrid transparent films exhibit promising features for various emerging flexible electronics and optoelectronic devices.  相似文献   
23.
High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic β-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat?/? mice the most sensitive to weight gain out of the three strains tested, followed by apoa1?/? mice. Nevertheless, only apoa1?/? mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic β-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1?/? and lcat?/? mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.  相似文献   
24.
Plaques that form in the brains of Alzheimer patients are made of deposits of the amyloid-beta peptide. We analyze the time evolution of amyloid-beta deposition in immunostained brain slices from transgenic mice. We find that amyloid-beta deposits appear in clusters whose characteristic size increases from 14 microm in 8-month-old mice to 22 microm in 12-month-old mice. We show that the clustering has implications for the biological growth of amyloid-beta by presenting a growth model that accounts for the experimentally observed structure of individual deposits and predicts the formation of clusters of deposits and their time evolution.  相似文献   
25.
Shaping and moving a spiroplasma   总被引:3,自引:0,他引:3  
The Mollicutes (Spiroplasma, Mycoplasma and Acholeplasma) are the most minimal cells known to exist, being the smallest and simplest free-living and self-replicating forms of life. Phylogenetically, the Mollicutes are related to gram-positive bacteria and have evolved, by regressive evolution and genome reduction, from Clostridia. The smallest genome in this group (Mycoplasma genitalium - 5.77 x 10(5) bp) is only twice that of a large virus (e.g., Entomopox viruses). The largest Mollicute genome (Spiroplasma LB12 - 2.2 x 10(6) bp) is only about half that of, e.g., Escherichia coli. Structurally, the Mollicutes lack cell walls and flagella, but have internal cytoskeletons and are motile and chemotactic. Only a cholesterol-containing unit membrane envelops the cells. No analogs to the bacterial chemotactic and motility (che, mot, fla) genes, genes for a two-component signal transduction system, genes associated with gliding, or genomic homologs for the eukaryotic cytoskeleton and motor proteins were found in the Mollicutes. The Spiroplasmas are unique amongst the Mollicutes in having a well-defined basic helical cell geometry. In this respect, the Spiroplasma cell can, essentially, be viewed as a helical dynamic membranal tube (diameter approximately 0.2 microm; equivalent to that of one eukaryotic flagellar axoneme or to a bacterial flagellar bundle). A flat cytoskeletal ribbon of parallel fibrils is attached to the inside of the cellular tube. Both tube and cytoskeleton are mutually coiled into a dynamic helix driven by differential length changes of the fibrils, which function as linear motors. The cytoskeletal ribbon follows the shortest (inner) helical line on the inner surface of the cellular tube. Being helical allows for further analytical reduction and consequent structural quantification of Spiroplasma. Of particular importance is the ability to correlate light and electron microscopy data and to calculate the fibril lengths (and corresponding molecular dimensions) in the helical and nonhelical dynamic states. The structural unit of the contractile cytoskeleton is a approximately 50-Angstrom-wide filament comprised of pairs of the 59-kD fib gene product. The monomers are arranged in pairs with opposite polarities allowing for a approximately 100-Angstrom-long axial repeat. The functional unit of the contractile cytoskeletal ribbon is a fibril comprised of an aligned pair of filaments. Neighboring repeats form a tetrameric ring with a lateral repeat of approximately 100 A. The axial length of the rings may shorten by approximately 40%, driving the changes in the fibril lengths and, consequently, helical dynamics. Local length changes result in helical symmetry breaking and nonreciprocating cell movements allowing for net directional displacement. Flexing allows for changes in swimming direction.  相似文献   
26.
Unger R  Uliel S  Havlin S 《Proteins》2003,51(4):569-576
It has been observed that the size of protein sequence families is unevenly distributed, with few super families with a large number of members and many "orphan" proteins that do not belong to any family. Here it is shown that the distribution of sizes of protein families in different databases and classifications (Protomap, Prodom, Cog) follows a power-law behavior with similar scaling exponents, which is characteristic of self-organizing systems. Since large databases are used in this study, a more detailed analysis of the data than in previous studies was possible. Hence, it is shown that the size distribution is governed by two exponents, different for the super families and the orphan proteins. A simple model of protein evolution is proposed, in which proteins are dynamically generated and clustered into families. The model yields a scaling behavior very similar to the distribution observed in the actual sequence databases, including the two distinct regimes for the large and small families, and thus suggests that the existence of "super families" of proteins and "orphan" proteins are two manifestations of the same evolutionary process.  相似文献   
27.
In the simple, helical, wall-less bacterial genus Spiroplasma, chemotaxis and motility are effected by a linear, contractile motor arranged as a flat cytoskeletal ribbon attached to the inner side of the membrane along the shortest helical line. With scanning transmission electron microscopy and diffraction analysis, we determined the hierarchical and spatial organization of the cytoskeleton of Spiroplasma citri R8A2. The structural unit appears to be a fibril, approximately 5 nm wide, composed of dimers of a 59-kDa protein; each ribbon is assembled from seven fibril pairs. The functional unit of the intact ribbon is a pair of aligned fibrils, along which pairs of dimers form tetrameric ring-like repeats. On average, isolated and purified ribbons contain 14 fibrils or seven well-aligned fibril pairs, which are the same structures observed in the intact cell. Scanning transmission electron microscopy mass analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified cytoskeletons indicate that the 59-kDa protein is the only constituent of the ribbons.  相似文献   
28.
Inotropic effects of electric currents applied during the refractory period have been reported in cardiac muscle in vitro using voltage-clamp techniques. We investigated how electric currents modulate cardiac contractility in normal canine hearts in vivo. Six dogs were instrumented to measure regional segment length, ventricular volume (sonomicrometry), and ventricular pressure. Cardiac contractility modulating (CCM) electric currents (biphasic square pulses, amplitude +/-20 mA, total duration 30 ms) were delivered during the refractory period between pairs of electrodes placed on anterior and posterior walls. CCM significantly increased index of global contractility (E(es)) from 5.9 +/- 2.9 to 8.3 +/- 4.6 mmHg/ml with anterior CCM, from 5.3 +/- 1.8 to 8.9 +/- 4.0 mmHg/ml with posterior CCM, and from 6.1 +/- 2.6 to 11.0 +/- 7.0 mmHg/ml with combined CCM (P < 0.01, no significant change in volume axis intercept). End-systolic pressure-segment length relations showed contractility enhancement near CCM delivery sites, but not remotely. Relaxation was not influenced. CCM increased mean aortic pressure, but did not change peripheral resistance. Locally applied electrical currents enhanced global cardiac contractility via regional changes in myocardial contractility without impairing relaxation in situ.  相似文献   
29.
The interfacial sequence DKWASLWNWFNITNWLWYIK, preceding the transmembrane anchor of gp41 glycoprotein subunit, has been shown to be essential for fusion activity and incorporation into virions. HIV(c), a peptide representing this region, formed lytic pores in liposomes composed of the main lipids occurring in the human immunodeficiency virus, type 1 (HIV-1), envelope, i.e. 1-palmitoyl-2-oleoylphosphatidylcholine (POPC):sphingomyelin (SPM):cholesterol (Chol) (1:1:1 mole ratio), at low (>1:10,000) peptide-to-lipid mole ratio, and promoted the mixing of vesicular lipids at >1:1000 peptide-to-lipid mole ratios. Inclusion of SPM or Chol in POPC membranes had different effects. Whereas SPM sustained pore formation, Chol promoted fusion activity. Even if partitioning into membranes was not affected in the absence of both SPM and Chol, HIV(c) had virtually no effect on POPC vesicles. Conditions described to disturb occurrence of lateral separation of phases in these systems reproduced the high peptide-dose requirements for leakage as found in pure POPC vesicles and inhibited fusion. Surface aggregation assays using rhodamine-labeled peptides demonstrated that SPM and Chol promoted HIV(c) self-aggregation in membranes. Employing head-group fluorescent phospholipid analogs in planar supported lipid layers, we were able to discern HIV(c) clusters associated to ordered domains. Our results support the notion that the pretransmembrane sequence may participate in the clustering of gp41 monomers within the HIV-1 envelope, and in bilayer architecture destabilization at the loci of fusion.  相似文献   
30.
Damage to the optic nerve in mammals induces retrograde degeneration and apoptosis of the retinal ganglion cell (RGC) bodies. The mechanisms that mediate the response of the neuronal cells to the axonal injury are still unknown. We have previously shown that semaphorins, axon guidance molecules with repulsive cues, are capable of mediating apoptosis in cultured neuronal cells (Shirvan, A., Ziv, I., Fleminger, G., Shina, R., He, Z., Brudo, I., Melamed, E., and Brazilai, A. (1999) J. Neurochem. 73, 961-971). In this study, we examined the involvement of semaphorins in an in vivo experimental animal model of complete axotomy of the rat optic nerve. We demonstrate that a marked induction of type III semaphorin proteins takes place in ipsilateral retinas at early stages following axotomy, well before any morphological signs of RGC apoptosis can be detected. Time course analysis revealed that a peak of expression occurred after 2-3 days and then declined. A small conserved peptide derived from semaphorin 3A that was previously shown to induce neuronal death in culture was capable of inducing RGC loss upon its intravitreous injection into the rat eye. Moreover, we demonstrate a marked inhibition of RGC loss when axotomized eyes were co-treated by intravitreous injection of function-blocking antibodies against the semaphorin 3A-derived peptide. Marked neuronal protection from degeneration was also observed when the antibodies were applied 24 h post-injury. We therefore suggest that semaphorins are key proteins that modulate the cell fate of axotomized RGC. Neutralization of the semaphorin repulsive function may serve as a promising new approach for treatment of traumatic injury in the adult mammalian central nervous system or of ophthalmologic diseases such as glaucoma and ischemic optic neuropathy that induce apoptotic RGC death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号