首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   12篇
  234篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2016年   3篇
  2015年   2篇
  2014年   12篇
  2013年   10篇
  2012年   13篇
  2011年   15篇
  2010年   8篇
  2009年   11篇
  2008年   14篇
  2007年   15篇
  2006年   9篇
  2005年   6篇
  2004年   13篇
  2003年   3篇
  2002年   5篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1995年   2篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1967年   1篇
  1962年   2篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
11.
12.
OBJECTIVE: Characterizing clinical and biochemical features of children diagnosed with diabetes mellitus between the ages of 6-24 months. DESIGN AND METHODS: Medical records of 42 children diagnosed with diabetes mellitus at age of 6-24 months were reviewed for gender, ethnic origin, family medical history, clinical and biochemical features at onset of diabetes compared with 60 diabetic patients diagnosed at age 5-16 years. RESULTS: Children diagnosed at 6-24 months had at onset more symptoms of apathy, restlessness, hyperglycemia during acute illness and a lower rate of remission than those diagnosed at older age (p < 0.001), significantly more episodes of diabetic ketoacidosis (83% vs. 40%, p < 0.001), lower HbA1c levels (mean 11.6 +/- 3.4 vs. 13.75 +/- 3.4%, p < 0.05) and a higher rate of celiac disease (12% vs. 3%, p = 0.046). There were no significant differences as to other autoimmune diseases. CONCLUSIONS: Patients with diabetes presenting at 6-24 months might be associated with a different clinical pattern and higher rate of celiac disease than diabetes presenting later in life. Understanding the nature and course of diabetes in this age group is crucial for planning interventional and preventive programs.  相似文献   
13.
Photosynthetic (oxygen evolution) and growth (biomass increase) responses to ambient pH and inorganic carbon (Ci) supply were determined for Porphyralinearis grown in 0.5 L glass cylinders in the laboratory, or in 40 L fibreglass outdoor tanks with running seawater. While net photosynthetic rates were uniform at pH 6.0–8.0, dropping only at pH 8.7, growth rates were significantly affected by pH levels other than that of seawater (c. pH 8.3). In glass cylinders, weekly growth rates averaged 76% at external pH 8.0, 13% at pH 8.7 and 26% at pH 7.0. Photosynthetic O2 evolution on a daily basis(i.e. total O2 evolved during day time less total O2 consumed during night time) was similar to the growth responses at all experimental pH levels, apparently due to high dark respiration rates measured at acidic pH. Weekly growth rates averaged 53% in algae grown in fibreglass tanks aerated with regular air (360 mg L-1 CO2) and 28% in algae grown in tanks aerated with CO2-enriched air (750 mg L-1 CO2). The pH of the seawater medium in which P. linear is was grown increased slightly during the day and only rarely reached 9.0. The pH at the boundary layer of algae submerged in seawater increased in response to light reaching, about pH 8.9 within minutes, or remained unchanged for algae submerged in a CO2-free artificial sea water medium. Photosynthesis of P. linearissaturated at Ci concentrations of seawater (K0.5560 μM at pH 8.2) and showed low photosynthetic affinity for CO2(K0.5 61 μM) at pH 6.0. It is therefore concluded that P. linearisuses primarily CO2 with HCO3 - being an alternative source of Ci for photosynthesis. Its fast growth could be related to the enzyme carbonic anhydrase whose activity was detected intra- and extracellularly. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
14.
15.
Summary A model is proposed for a prebiotic environment in which concentration, condensation, and chemical evolution of biomolecules could have taken place. The main reactions expected of proteins, nucleic acids, lipids, and some of their precursors in this environment are examined.The model is based on our previously developed concept of a fluctuating system in which hydration and dehydration processes take place in a cyclic manner. In the present model, however, high concentrations of soluble salts, such as chlorides and sulfates, are taken into account, whereas previously a more or less salt-free system had been assumed. Thus the preponderance of surfaces of soluble salts is implied, even though sparingly soluble minerals, such as clay minerals or quartz, are also present.During the dehydration stage biomolecules tend to leave the solution and concentrate at certain microenvironments, such as in micelles and aggregates, at the liquid-gas surface and, possibly, at the emerging solid surfaces. Moreover, in these brines, and especially during the last stages of dehydration, high temperatures are attainable, which may enhance certain reactions between the organic molecules, and result in a net increase of condensation over degradation.In the dehydrated state, solid-state condensation and synthesis reactions are possible in which the surface of soluble salts may serve as a catalyst. Several reports in the literature support this hypothesis. Hydration brings about dissolution of the minerals and redistribution of the biomolecules. In such a system, evolutionary processes like those postulated by White (1980) and by Lahav and White (1980) are possible. Moreover, since several soluble salts of known geological occurrence are optically active in their crystalline state, the involvement of the model system in the selection and evolution of chiral organic compounds should also be considered. In addition, organic molecules in the above microenvironments are also expected to undergo selective interactions based on factors such as molecular pattern and chiral recognition and hydrophobicity. The proposed system emphasizes the need to develop the theoretical background and experimental methods for the study of interactions among biomolecules in the presence of high salt concentrations and solid surfaces of soluble salts, as well as interactions between the biomolecules and these surfaces.  相似文献   
16.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a′ (Zn-BChl a′) (Tsukatani et al. in J Biol Chem 287:5720–5732, 2012). Based upon experimental and quantum chemical 15N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a′. Chl a and 81-OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.  相似文献   
17.
Thrombospondin synthesized and secreted by human endothelial cells in culture binds specifically to fibronectin immobilized on Sepharose beads. It can also bind to immobilized platelet-derived thrombospondin but not to immobilized gelatin or albumin. These interactions are not dependent on the presence of divalent cations or of other secreted materials. Purified platelet thrombospondin binds to fibronectin and fibrinogen immobilized on plastic surfaces with dissociation constants of 1.12 +/- 0.37 X 10(-7) M and 1.27 +/- 0.41 X 10(-7) M respectively, and to thrombospondin immobilized on plastic with dissociation constant of 4.82 +/- 1.01 X 10(-7) M. The affinities of interaction are not significantly affected by removal of divalent cations. Soluble fibrinogen inhibits binding of thrombospondin to fibronectin regardless of which of the latter two is surface-bound. Thrombospondin-fibronectin interaction is also inhibited by soluble thrombospondin. The binding of soluble thrombospondin to surface-bound fibrinogen is inhibited both by soluble fibronectin and soluble fibrinogen. These results suggest that thrombospondin plays a role both in platelet-platelet aggregation and in platelet-substratum adhesion, and that it may also take part in the construction of the extracellular matrix.  相似文献   
18.
19.
The applicability of the RNA-world and co-evolution hypotheses to the study of the very first stages of the origin of life is discussed. The discussion focuses on the basic differences between the two hypotheses and their implications, with regard to the reconstruction methodology, ribosome emergence, balance between ribozymes and protein enzymes, and their major difficulties. Additional complexities of the two hypotheses, such as membranes and the energy source of the first reactions, are not treated in the present work.A central element in the proposed experimental strategies is the study of the catalytic activities of very small peptides and RNA-like oligomers, according to existing, as well as to yet-to-be-invented scenarios of the two hypotheses under consideration. It is suggested that the noveldirected molecular evolution technology, andmolecular computational modeling, can be applied to this research. This strategy is assumed to be essential for the suggested goal of future studies of the origin of life, namely, the establishment of a Primordial Darwinian entity.  相似文献   
20.
Isothermal microcalorimetry is a sensitive non-invasive analytical tool that can become useful in research on compost and other biosolids. The aim of the present study was to address several methodological aspects that are critical to the use of microcalorimetry to assess the dynamics of microbial activity in such systems. The results show that: (1) The calorimetric baseline is strongly influenced by the run temperature in the range relevant to composting systems (20–60 °C), and is also affected by addition of the water that is required to maintain or optimize microbial activity, presumably because some water evaporates through ampoule gaskets. (2) Amending mature compost with readily available substrates requires additional careful baseline treatment. (3) Sample heterogeneity can be successfully minimized by passing through a 2-mm sieve. Additional size separation can be useful to enable focusing on the more active fractions. (4) Oxygen depletion is a key feature in batch calorimetric analysis; for samples of highly active composts or manure, the total amount of heat released relative to the oxygen available in the ampoule may indicate the co-existence of anaerobic and aerobic metabolic pathways. Finally, practical recommendations for microcalorimetry analyses of pre-mature and mature composts are outlined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号