首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   42篇
  2022年   4篇
  2021年   11篇
  2020年   5篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   27篇
  2014年   23篇
  2013年   19篇
  2012年   45篇
  2011年   36篇
  2010年   21篇
  2009年   16篇
  2008年   30篇
  2007年   30篇
  2006年   16篇
  2005年   19篇
  2004年   37篇
  2003年   24篇
  2002年   19篇
  2001年   7篇
  2000年   3篇
  1999年   1篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1971年   3篇
  1967年   1篇
排序方式: 共有471条查询结果,搜索用时 15 毫秒
31.
Plastid chaperonin 60 (cpn60) is a chloroplast protein, presumed to assist in assembly and folding of plastid proteins. Although molecular chaperones often accumulate significantly in response to stress, this has never been demonstrated for cpn60. In this study, the accumulation of cpn60 in Nicotiana seedlings during their development was followed under different stress conditions. It was found that cpn60 accumulates markedly in developing seedlings in response to tentoxin and several other (but not all) stresses. Cpn60 accumulates only during a narrow period of seedling development. It is proposed that cpn60 accumulation under stress is developmentally regulated.  相似文献   
32.
Intensive studies of an advanced energy material are reported and lithium polyacrylate (LiPAA) is proven to be a surprisingly unique, multifunctional binder for high‐voltage Li‐ion batteries. The absence of effective passivation at the interface of high‐voltage cathodes in Li‐ion batteries may negatively affect their electrochemical performance, due to detrimental phenomena such as electrolyte solution oxidation and dissolution of transition metal cations. A strategy is introduced to build a stable cathode–electrolyte solution interphase for LiNi0.5Mn1.5O4 (LNMO) spinel high‐voltage cathodes during the electrode fabrication process by simply using LiPAA as the cathode binder. LiPAA is a superb binder due to unique adhesion, cohesion, and wetting properties. It forms a uniform thin passivating film on LNMO and conducting carbon particles in composite cathodes and also compensates Li‐ion loss in full Li‐ion batteries by acting as an extra Li source. It is shown that these positive roles of LiPAA lead to a significant improvement in the electrochemical performance (e.g., cycle life, cell impedance, and rate capability) of LNMO/graphite battery prototypes, compared with that obtained using traditional polyvinylidene fluoride (PVdF) binder for LNMO cathodes. In addition, replacing PVdF with LiPAA binder for LNMO cathodes offers better adhesion, lower cost, and clear environmental advantages.  相似文献   
33.
Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.  相似文献   
34.
Protein post-translational modifications mediate dynamic cellular processes with broad implications in human disease pathogenesis. There is a large demand for high-throughput technologies supporting post-translational modifications research, and both mass spectrometry and protein arrays have been successfully utilized for this purpose. Protein arrays override the major limitation of target protein abundance inherently associated with MS analysis. This technology, however, is typically restricted to pre-purified proteins spotted in a fixed composition on chips with limited life-time and functionality. In addition, the chips are expensive and designed for a single use, making complex experiments cost-prohibitive. Combining microfluidics with in situ protein expression from a cDNA microarray addressed these limitations. Based on this approach, we introduce a modular integrated microfluidic platform for multiple post-translational modifications analysis of freshly synthesized protein arrays (IMPA). The system''s potency, specificity and flexibility are demonstrated for tyrosine phosphorylation and ubiquitination in quasicellular environments. Unlimited by design and protein composition, and relying on minute amounts of biological material and cost-effective technology, this unique approach is applicable for a broad range of basic, biomedical and biomarker research.Protein post-translational modifications (PTMs)1 vastly diversify eukaryotic proteomes and are integrated in essentially all cellular processes (1). Proteomic approaches, such as mass spectrometry (MS), have been instrumental in monitoring global molecular dynamics for research and clinical applications (25). However, even in this modern era, large-scale analyses of PTMs by MS is challenging because of the limited number of modified peptides derived from proteins that, by themselves, may not be abundant. Moreover, comprehensive PTM analysis by MS often requires significant amounts of biological material that may not be available. PTM analysis using protein arrays can overcome these limitations because of the equimolar amount of the arrayed proteins (6, 7). Large-scale protein arrays have been successfully integrated into PTM research (8, 9). However, this technology relies on pre-purified proteins that are arrayed on a surface and thus, incompatible with biochemically challenging proteins, let alone insoluble proteins. Moreover, the production of recombinant protein arrays is impractical in-house. Therefore, such arrays cannot be used fresh, and they are inherently limited to certain designs, protein compositions, and model organisms of high commercial value. To overcome the abovementioned limitations, we designed a modular integrated microfluidic platform for PTM analysis (IMPA).  相似文献   
35.
36.
37.
This paper reviews and synthesizes emerging multi-disciplinary evidence toward understanding the development of social and political organization in the Last Glacial. Evidence for the prevalence and scope of political egalitarianism is reviewed and the biological, social, and environmental influences on this mode of human organization are further explored. Viewing social and political organization in the Last Glacial in a much wider, multi-disciplinary context provides the footing for coherent theory building and hypothesis testing by which to further explore human political systems. We aim to overcome the claim that our ancestors’ form of social organization is untestable, as well as counter a degree of exaggeration regarding possibilities for sedentism, population densities, and hierarchical structures prior to the Holocene with crucial advances from disparate disciplines.  相似文献   
38.
Mature B cells replace the mu constant region of the H chain with a downstream isotype in a process of class switch recombination (CSR). Studies suggest that CSR induction is limited to activated mature B cells in the periphery. Recently, we have shown that CSR spontaneously occur in B lymphopoiesis. However, the mechanism and regulation of it have not been defined. In this study, we show that spontaneous CSR occurs at all stages of B cell development and generates aberrant joining of the switch junctions as revealed by: 1) increased load of somatic mutations around the CSR break points, 2) reduced sequence overlaps at the junctions, and 3) excessive switch region deletion. In addition, we found that incidence of spontaneous CSR is increased in cells carrying VDJ rearrangements. Our results reveal major differences between spontaneous CSR in developing B cells and CSR induced in mature B cells upon activation. These differences can be explained by deregulated expression or function of activation-induced cytidine deaminase early in B cell development.  相似文献   
39.
We develop a mathematical framework for modeling regulatory mechanisms in the immune system. The model describes dynamics of key components of the immune network within two compartments: lymph node and tissue. We demonstrate using numerical simulations that our system can eliminate virus-infected cells, which are characterized by a tendency to increase without control (in absence of an immune response), while tolerating normal cells, which are characterized by a tendency to approach a stable equilibrium population. We experiment with different combinations of T cell reactivities that lead to effective systems and conclude that slightly self-reactive T cells can exist within the immune system and are controlled by regulatory cells. We observe that CD8+ T cell dynamics has two phases. In the first phase, CD8+ cells remain sequestered within the lymph node during a period of proliferation. In the second phase, the CD8+ population emigrates to the tissue and destroys its target population. We also conclude that a self-tolerant system must have a mechanism of central tolerance to ensure that self-reactive T cells are not too self-reactive. Furthermore, the effectiveness of a system depends on a balance between the reactivities of the effector and regulatory T cell populations, where the effectors are slightly more reactive than the regulatory cells.  相似文献   
40.
Regulated programmed cell death (PCD) processes have been documented in several phytoplankton species and are hypothesized to play a role in population dynamics. However, the mechanisms leading to the coordinated collapse of phytoplankton blooms are poorly understood. We showed that the collapse of the annual bloom of Peridinium gatunense, an abundant dinoflagellate in Lake Kinneret, Israel, is initiated by CO2 limitation followed by oxidative stress that triggers a PCD-like cascade. We provide evidences that a protease excreted by senescing P. gatunense cells sensitizes younger cells to oxidative stress and may consequently trigger synchronized cell death of the population. Ageing of the P. gatunense cultures was characterized by a remarkable rise in DNA fragmentation and enhanced sensitivity to H2O2. Exposure of logarithmic phase (young) cultures to conditioning media from stationary phase (old) cells sensitized them to H2O2 and led to premature massive cell death. We detected the induction of specific extracellular protease activity, leupeptin-sensitive, in ageing cultures and in lake waters during the succession of the P. gatunense bloom. Partial purification of the conditioned media revealed that this protease activity is responsible for the higher susceptibility of young cells to oxidative stress. Inhibition of the protease activity lowered the sensitivity to oxidative stress, whereas application of papain to logarithmic phase P. gatunense cultures mimicked the effect of the spent media and enhanced cell death. We propose a novel mechanistic framework by which a population of unicellular phytoplankton orchestrates a coordinated response to stress, thereby determine the fate of its individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号