首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2701篇
  免费   165篇
  2866篇
  2022年   18篇
  2021年   28篇
  2020年   18篇
  2019年   27篇
  2018年   35篇
  2017年   32篇
  2016年   56篇
  2015年   74篇
  2014年   104篇
  2013年   180篇
  2012年   168篇
  2011年   150篇
  2010年   86篇
  2009年   70篇
  2008年   152篇
  2007年   113篇
  2006年   134篇
  2005年   124篇
  2004年   131篇
  2003年   104篇
  2002年   89篇
  2001年   93篇
  2000年   95篇
  1999年   84篇
  1998年   29篇
  1997年   18篇
  1996年   12篇
  1995年   20篇
  1994年   16篇
  1993年   16篇
  1992年   47篇
  1991年   45篇
  1990年   42篇
  1989年   53篇
  1988年   48篇
  1987年   42篇
  1986年   43篇
  1985年   39篇
  1984年   28篇
  1983年   10篇
  1982年   28篇
  1981年   13篇
  1979年   17篇
  1978年   18篇
  1977年   12篇
  1974年   13篇
  1973年   12篇
  1972年   8篇
  1969年   16篇
  1967年   7篇
排序方式: 共有2866条查询结果,搜索用时 9 毫秒
11.
The effect of calmodulin antagonists on the amounts of free fatty acids produced by rabbit alveolar macrophages was determined by fluorometric high-performance liquid chromatography. Opsonized zymosan-induced arachidonic acid production was dramatically suppressed in the presence of W-7 and trifluoperazine without an effect on the production of other fatty acids. Calmodulin antagonists inhibited phospholipase A and abolished the release of arachidonic acid from phospholipids. The present results suggest that a zymosan-sensitive pool of 20:4, which is different from that of other fatty acids, is present in macrophages and that calmodulin antagonists selectively inhibit phospholipase A, which preferentially degrades phospholipids with 20:4.  相似文献   
12.
Ehrlich ascites cells were cultured with 1-O-[3H]alkylglycero-3-phosphoethanolamine (1-[3H]alkyl-GPE) or 1-O-[3H]alkylglycero-3-phosphocholine (1-[3H]alkyl-GPC) to reveal the selective retention of polyunsaturated fatty acids at second position of ether-containing phospholipids. Although small percentages of the lysophospholipids were degraded into long-chain alcohol, both alkyllyso-GPE and -GPC were acylated at the rate of approximately 2 nmol/30 min per 10(7) cells. Alkylacylacetylglycerols were prepared from the acylated products by phospholipase C treatment, acetylation and TLC, and fractionated according to the degree of unsaturation by AgNO3-TLC. The distribution of the radioactivity among the subfractions indicated that both alkyllysophospholipids were mainly esterified by docosahexaenoic acid and to a somewhat lesser extent by arachidonic acid. The selectivity for docosahexaenoic acid in the esterification of 1-alkyl-GPE was much stronger than in that of 1-alkyl-GPC. Although acyl-CoA: 1-alkyl-glycerophosphoethanolamine acyltransferase activity of Ehrlich cell microsomes with arachidonoyl-CoA and docosahexaenoyl-CoA as acyl donors was negligible compared with the acyl-CoA:1-alkyl-glycerophosphocholine acyltransferase activity, a significant amount of 1-alkyl-GPE was acylated in the microsomes without exogenously added acyl-CoA. HPLC analysis revealed that docosahexaenoic acid and arachidonic acid were mainly esterified by the microsomal transferase. Acylation of 1-alkyl-GPC with docosahexaenoic acid and arachidonic acid was also observed in the absence of added acyl-CoA, but the activity was lower than that for 1-alkyl-GPE. Although the source of the acyl donor in the acylation has not been determined, the acylation is probably due to the direct transfer of acyl groups between intact phospholipids. The above results provided the first evidence that the lysophospholipid acyltransferase system including the transacylase activity participates in the selective retention of docosahexaenoic acid in intact cells and a cell free system.  相似文献   
13.
Direct evidence has been obtained that the tail-associated lysozyme of bacteriophage T4 (tail-lysozyme) is gp5, which is a protein component of the hub of the baseplate. Tails were treated with 3 M guanidine hydrochloride containing 1% Triton X-100, and the tail-lysozyme was separated from other tail components by preparative isoelectric focusing electrophoresis as a peak with a pI of 8.4. The molecular weight as determined from sodium dodecyl sulfate electrophoresis was 42,000. The tail-lysozyme was unambiguously identified as gp5 when the position of the lysozyme was compared with that of gp5 of tube-baseplates from 5ts1/23amH11/eL1ainfected Escherichia coli cells by two-dimensional gel electrophoresis. The tail-lysozyme has N-acetylmuramidase activity and the same substrate specificity as gene e lysozyme; the optimum pH is around 5.8, about 1 pH unit lower than for the e lysozyme. We assume that the tail-lysozyme plays an essential role in locally digesting the peptidoglycan layer to let the tube penetrate into the periplasmic space. The tail-lysozyme is presumably also responsible for "lysis from without."  相似文献   
14.
Summary Paraffin sections of the trigeminal nerve root of the rat, and human spinal nerve root and trigeminal ganglion were stained with a battery of lectin-horseradish peroxidase conjugates to localize and characterize glycoconjugate (GC) in situ. In the rat the myelin sheath of the peripheral segment contained GC with sialic acid most probably linked to the penultinate disaccharide galactose(1 4)-N-acetylglucosamine (Gal(1 )-GlcNAc), and complex type N-glycosidic side chains. The myelin sheath in the central segment differed in containing little if any of the GC named above and in containing GC with terminal -Gal linked to N-acetylgalactosamine (GalNAc), terminal GalNAc and fucose. Schwann cells stained for GC with GlcNAc or mannose whereas oligodendroglia stained for GC with the terminal disaccharide Gal-(1 3)-GalNAc and N-glycosidic side chains, especially in presumed Golgi zones, but also in processes continued as the outer myelin sheath. The human myelin sheath in the central segment differed from that of the rat in not staining with lectins specific for fucose and terminal GalNAc. Sialic acid and terminal -Gal were seen in the human central segment but these sugars appeared to bind to astroglial structures rather than to the myelin sheath as in the rat. Astrocytes in both rat and man were stained by two fucose-binding lectins. Several lectins revealed affinity for GC in the neurilemmal sheath, and staining of this structure was stronger in the human specimens. Neurons in the human trigeminal ganglion ranged from unstained to strongly positive for fucoconjugate in cytoplasmic bodies and plasmalemma. Positive ganglion cells gave rise to unmyelinated fibers which also stained for fucoconjugate. Remak fibers and their extensions into the substantia gelatinosa of the human spinal cord stained strongly for content of fucose.The stronger lectin affinity for N-glycosidic core sugars in the peripheral as compared with the central segment suggests that lectins localize Po protein in peripheral myelin. The reactivity for several sugars in the central segment can possibly be attributed to myelin-associated glycoprotein (MAG) of central myelin, but lectin staining for GalNAc shows in addition a biochemically unrecognized GC with O-glycosidic linked oligosaccharides in myelin. The lectin cytochemistry indicates that the 170 K Dalton glycoprotein with PNA affinity obtained from rat sciatic nerves occurs in nodes of Ranvier.This research was supported by NIH Grants AM-10956, HL-29775 and United Health and Medical Research Foundation of South Carolina, Inc. Grant No. 79  相似文献   
15.
16.
17.
18.
The leech (Macrobdella decora) was found to contain two sialic acid-cleaving enzymes: an ordinary sialidase and a novel sialic acid-cleaving enzyme. This novel enzyme released 2,7-anhydro-alpha-N-acetylneuraminic acid (Neu2,7-anhydro5Ac) instead of alpha-N-acetylneuraminic acid (Neu5Ac) from 4-methylumbelliferyl-Neu5Ac, glycoproteins, and gangliosides. We have partially purified this novel sialidase from M. decora. We have also isolated Neu2,7-anhydro5Ac released from 4-methylumelliferyl-Neu5Ac and whale nasal keratan sulfate in pure form. The novel sialidase produced Neu2,7-anhydro5Ac only from sialoglycoconjugates, but not from free Neu5Ac. The structure of Neu2,7-anhydro5Ac produced by the novel sialidase was established by chemical analysis, mass spectrometry, and NMR spectroscopy. NMR analysis showed that instead of the original 2C5 conformation, the pyranose ring of Neu2,7-anhydro5Ac was in the 5C2 conformation, which makes the formation of the 2,7-anhydro bridge possible.  相似文献   
19.
Gelatinases have been purified from the exudate in the chronic-phase (day 7) of carrageenin-induced inflammation in rats. The day-7 exudate gelatinases gave two peaks on Sephadex G-150 gel filtration, the initial step of the purification. The molecular weights of the gelatinases corresponding to the two peaks were about 300 kDa (HMW fraction) and about 110 kDa (LMW fraction), respectively. The gelatinase in the HMW fraction has been purified to homogeneity; the purified gelatinase gave a single band corresponding to a molecular weight of 57 kDa on both SDS-polyacrylamide gel electrophoresis (PAGE) and SDS-gelatin PAGE. On the other hand, the gelatinase purified from the LMW fraction was found to consist of three species, with molecular weights of 66, 64, and 57 kDa, as judged on SDS-gelatin PAGE. Granulation tissue-derived fibroblasts in culture mainly produced the 64-kDa species, which was converted to a 57-kDa species on treatment with 4-amino-phenylmercuric acetate, while rat macrophages and polymorphonuclear leukocytes mainly secreted the 96-kDa species. These results suggest that exudate gelatinases are largely produced by fibroblasts in granulation tissue and that they bind to exudate proteins, resulting in the formation of complexes with molecular weights of about 300 kDa and about 110 kDa. The gelatinases purified from the HMW and LMW fractions are metalloproteinases, as judged from the results of inhibitor experiments. Both the gelatinases degraded gelatin, but showed to proteolytic activity toward alpha-casein or type I collagen. Type IV collagen was degraded at 35 degrees C by the gelatinases purified from the LMW fraction but not by that from the HMW fraction.  相似文献   
20.
Homogeneous indanol dehydrogenase from monkey liver catalyzed the reversible conversion of 3 alpha- or 20 alpha-hydroxy groups of several bile acids and 5 beta-pregnanes to the corresponding 3- or 20-ketosteroids. The kcat values for the steroids determined at pH 7.4 were low, but the kcat/Km values for the 3-ketosteroids were comparable to or exceeded those for 1-indanol and xenobiotic carbonyl substrates. The enzyme transferred the 4-pro-R-hydrogen atom of NADPH to the 3 beta- or 20 beta-face of the ketosteroid substrate. Competitive inhibition of the hydroxysteroid dehydrogenase activity of the enzyme by medroxyprogesterone acetate, hexestrol, and 1,10-phenanthroline suggests that both 1-indanol and hydroxysteroid are oxidized at the same active site on the enzyme. The specific inhibitor of the enzyme, 1,10-phenanthroline, suppressed the 3 alpha-hydroxysteroid dehydrogenase activity in the crude extract of monkey liver by 50%. The results strongly suggest that indanol dehydrogenase acts as a 3(20)alpha-hydroxysteroid dehydrogenase in the metabolism of certain steroid hormones and bile acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号