首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   700篇
  免费   51篇
  国内免费   1篇
  2022年   3篇
  2021年   7篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   9篇
  2015年   20篇
  2014年   16篇
  2013年   36篇
  2012年   45篇
  2011年   55篇
  2010年   36篇
  2009年   20篇
  2008年   54篇
  2007年   64篇
  2006年   58篇
  2005年   58篇
  2004年   55篇
  2003年   35篇
  2002年   36篇
  2001年   9篇
  2000年   6篇
  1999年   9篇
  1998年   9篇
  1997年   5篇
  1996年   6篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1989年   11篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1966年   1篇
  1960年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有752条查询结果,搜索用时 343 毫秒
71.
72.
Kato T  Wakita T 《Uirusu》2005,55(2):287-295
Hepatitis C virus (HCV) is a major public health problem, infecting an estimated 170 million people worldwide. Current therapy for HCV-related chronic hepatitis is based on the use of interferon. However, virus clearance rates are insufficient. Investigations to develop the anti-viral therapy or to understand the life cycle of this virus have been hampered by the lack of viral culture systems. We isolated the JFH-1 strain from a patient with fulminant hepatitis, and the JFH-1 subgenomic replicon could replicate efficiently in culture cell without adaptive mutation. Recently, we developed the HCV infection system in culture cells with this JFH-1 strain. The full-length JFH-1 RNA was transfected into Huh7 cells. Subsequently, viral RNA efficiently replicated in transfected cells and viral particles were secreted. Furthermore, secreted virus displayed infectivity for naive Huh7 cells. This system provides a powerful tool for studying the viral life cycle and constructing anti-viral strategies.  相似文献   
73.
We have previously shown that mice inoculated intranasally with a wild-type baculovirus (Autographa californica nuclear polyhedrosis virus [AcNPV]) are protected from a lethal challenge by influenza virus. However, the precise mechanism of induction of this protective immune response by the AcNPV treatment remained unclear. Here we show that AcNPV activates immune cells via the Toll-like receptor 9 (TLR9)/MyD88-dependent signaling pathway. The production of inflammatory cytokines was severely reduced in peritoneal macrophages (PECs) and splenic CD11c(+) dendritic cells (DCs) derived from mice deficient in MyD88 or TLR9 after cultivation with AcNPV. In contrast, a significant amount of alpha interferon (IFN-alpha) was still detectable in the PECs and DCs of these mice after stimulation with AcNPV, suggesting that a TLR9/MyD88-independent signaling pathway might also participate in the production of IFN-alpha by AcNPV. Since previous work showed that TLR9 ligands include bacterial DNA and certain oligonucleotides containing unmethylated CpG dinucleotides, we also examined the effect of baculoviral DNA on the induction of innate immunity. Transfection of the murine macrophage cell line RAW264.7 with baculoviral DNA resulted in the production of the inflammatory cytokine, while the removal of envelope glycoproteins from viral particles, UV irradiation of the virus, and pretreatment with purified baculovirus envelope proteins or endosomal maturation inhibitors diminished the induction of the immune response by AcNPV. Together, these results indicate that the internalization of viral DNA via membrane fusion mediated by the viral envelope glycoprotein, as well as endosomal maturation, which releases the viral genome into TLR9-expressing cellular compartments, is necessary for the induction of the innate immune response by AcNPV.  相似文献   
74.
Hepatitis C virus (HCV) infection causes chronic liver diseases and is a global public health problem. Detailed analyses of HCV have been hampered by the lack of viral culture systems. Subgenomic replicons of the JFH1 genotype 2a strain cloned from an individual with fulminant hepatitis replicate efficiently in cell culture. Here we show that the JFH1 genome replicates efficiently and supports secretion of viral particles after transfection into a human hepatoma cell line (Huh7). Particles have a density of about 1.15-1.17 g/ml and a spherical morphology with an average diameter of about 55 nm. Secreted virus is infectious for Huh7 cells and infectivity can be neutralized by CD81-specific antibodies and by immunoglobulins from chronically infected individuals. The cell culture-generated HCV is infectious for chimpanzee. This system provides a powerful tool for studying the viral life cycle and developing antiviral strategies.  相似文献   
75.
The functional roles of phenylalanine at position 120 in drug oxidation by cytochrome P450 2D6 (CYP2D6) were examined using a yeast cell expression system and bufuralol (BF) enantiomers as a chiral substrate. Two mutated cDNAs, one encoding a CYP2D6 mutant having alanine instead of Phe-120 (F120A) and another encoding a mutant having alanine instead of Glu-222 (E222A), were prepared by site-directed mutagenesis and transformed into yeast cells via pGYRI vectors. The enantiomeric BF 1'-hydroxylase activities of the mutants were compared with those of the wild type. When enantiomeric BF 1'-hydroxylase activities at a substrate concentration of 100 microM were compared, the CYP2D6 wild type showed substrate enantioselectivity of (R-BF > S-BF) and the F120A mutant exhibited substrate enantioselectivity of (R-BF < or = S-BF), whereas the product diastereoselectivity of (1'R-OH-BF < 1'-S-OH-BF) was similar between the wild type and the mutant. The activities of the other mutant (E222A) were much lower than those of the wild type and the F120A mutant, while its substrate enantioselectivity and product diastereoselectivity were the same as those of the wild type. The kinetics demonstrated that apparent K(m) values were similar among the recombinant enzymes, and V(max) values clearly reflected the selectivity described above. These results indicate that Phe-120 has a key role in the enantioselective BF 1'-hydroxylation by CYP2D6.  相似文献   
76.
Summary This study was designed to establish how mitotic cell proliferation and apoptotic cell death participate in the regeneration of atrophied rat sublingual glands. To induce atrophy to the sublingual gland of rats, the excretory duct was ligated unilaterally near the hilum, and after 1 week of ligation (day 0) the duct ligation was released to enable gland regeneration. The regenerating glands were examined with routine histology, immunohistochemistry for proliferating cell nuclear antigen (PCNA) as a marker of proliferating cells, terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) as a marker of apoptotic cells, and transmission electron microscopy. At day 0, a few acini and many ducts remained in the atrophic sublingual glands, and newly formed immature acini were observed at day 3. Thereafter acinar cells progressively matured and increased in number, although the number of ducts decreased. Many PCNA- and some TUNEL-positive cells were seen in acini and ducts during regeneration. The labeling indices for both cell types were statistically significantly different from that of the control at several time points of the regeneration. Apoptotic and mitotic cells were also confirmed to be present in the experimental sublingual glands by electron microscopy. These observations suggest that apoptosis as well as mitosis of duct and acinar cells actively participate in and play important roles in sublingual gland regeneration.  相似文献   
77.
Viral infections and local production of cytokines probably contribute to the pathogenesis of Type 1 diabetes. The viral replicative intermediate double-stranded RNA (dsRNA, tested in the form of polyinosinic-polycytidylic acid, PIC), in combination with the cytokine interferon-gamma (IFN-gamma), triggers beta-cell apoptosis. We have previously observed by microarray analysis that PIC induces expression of several mRNAs encoding for genes downstream of Toll-like receptor 3 (TLR3) signaling pathway. In this report, we show that exposure of beta-cells to dsRNA in combination with IFN-alpha, -beta, or -gamma significantly increases apoptosis. Moreover, dsRNA induces TLR3 mRNA expression and activates NF-kappaB and the IFN-beta promoter in a TRIF-dependent manner. dsRNA also induces an early (1 h) and sustained increase in IFN-beta mRNA expression, and blocking IFN-beta with a specific antibody partially prevents PIC plus IFN-gamma-induced beta-cell death. On the other hand, dsRNA plus IFN-gamma does not induce apoptosis in INS-1E cells, and expression of TLR3 and type I IFNs mRNAs is not detected in these cells. Of note, disruption of the STAT-1 signaling pathway protects beta-cells against dsRNA plus IFN-gamma-induced beta-cell apoptosis. This study suggests that dsRNA plus IFN-gamma triggers beta-cell apoptosis by two complementary pathways, namely TLR3-TRIF-NF-kappaB and STAT-1.  相似文献   
78.
LPS has a priming effect on various stimuli. For instance, LPS priming enhances the production of platelet-activating factor (PAF), a proinflammatory lipid mediator that is induced by PAF itself. Among various enzymes responsible for PAF biosynthesis, acetyl-coenzyme A:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase is one of the enzymes activated by PAF receptor stimulation. In this study we investigated the priming effect of LPS on the acetyltransferase activation by PAF in TLR4-knockout (KO) mice, MyD88-KO mice, and Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF)-KO mice. This enzyme was biphasically activated by LPS. Although the first peak occurred within 30 min in wild-type (WT), but not TLR4-KO or MyD88-KO, macrophages, the second phase reached a maximum within hours in WT, MyD88-KO, and TRIF-KO, but not in TLR4-KO, macrophages. Only in the second phase was the increase in acetyltransferase activity upon PAF receptor activation remarkably enhanced in WT, MyD88-KO, and TRIF-KO cells, but not in TLR4-KO cells. These data demonstrated that LPS exerted a priming effect on PAF receptor-mediated acetyltransferase activation through the TLR4-dependent, but MyD88- and TRIF-independent, pathway.  相似文献   
79.
Muramyl dipeptide (MDP) is the minimal essential structural unit responsible for the immunoadjuvant activity of peptidoglycan. As well as bone-resorbing factors such as 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and PGE2, LPS and IL-1alpha stimulate osteoclast formation in mouse cocultures of primary osteoblasts and hemopoietic cells. MDP alone could not induce osteoclast formation in the coculture, but enhanced osteoclast formation induced by LPS, IL-1alpha, or TNF-alpha but not 1alpha,25(OH)2D3 or PGE2. MDP failed to enhance osteoclast formation from osteoclast progenitors induced by receptor activator of NF-kappaB ligand (RANKL) or TNF-alpha. MDP up-regulated RANKL expression in osteoblasts treated with LPS or TNF-alpha but not 1alpha,25(OH)2D3. Osteoblasts expressed mRNA of nucleotide-binding oligomerization domain 2 (Nod2), an intracellular sensor of MDP, in response to LPS, IL-1alpha, or TNF-alpha but not 1alpha,25(OH)2D3. Induction of Nod2 mRNA expression by LPS but not by TNF-alpha in osteoblasts was dependent on TLR4 and MyD88. MDP also enhanced TNF-alpha-induced osteoclast formation in cocultures prepared from Toll/IL-1R domain-containing adapter protein (TIRAP)-deficient mice through the up-regulation of RANKL mRNA expression in osteoblasts, suggesting that TLR2 is not involved in the MDP-induced osteoclast formation. The depletion of intracellular Nod2 by small interfering RNA blocked MDP-induced up-regulation of RANKL mRNA in osteoblasts. LPS and RANKL stimulated the survival of osteoclasts, and this effect was not enhanced by MDP. These results suggest that MDP synergistically enhances osteoclast formation induced by LPS, IL-1alpha, and TNF-alpha through RANKL expression in osteoblasts, and that Nod2-mediated signals are involved in the MDP-induced RANKL expression in osteoblasts.  相似文献   
80.
We examined the in vivo role of membrane-bound prostaglandin E synthase (mPGES)-1, a terminal enzyme in the PGE2-biosynthetic pathway, using mPGES-1 knockout (KO) mice. Comparison of PGES activity in the membrane fraction of tissues from mPGES-1 KO and wild-type (WT) mice indicated that mPGES-1 accounted for the majority of lipopolysaccharide (LPS)-inducible PGES in WT mice. LPS-stimulated production of PGE2, but not other PGs, was impaired markedly in mPGES-1-null macrophages, although a low level of cyclooxygenase-2-dependent PGE2 production still remained. Pain nociception, as assessed by the acetic acid writhing response, was reduced significantly in KO mice relative to WT mice. This phenotype was particularly evident when these mice were primed with LPS, where the stretching behavior and the peritoneal PGE2 level of KO mice were far less than those of WT mice. Formation of inflammatory granulation tissue and attendant angiogenesis in the dorsum induced by subcutaneous implantation of a cotton thread were reduced significantly in KO mice compared with WT mice. Moreover, collagen antibody-induced arthritis, a model for human rheumatoid arthritis, was milder in KO mice than in WT mice. Collectively, our present results provide unequivocal evidence that mPGES-1 contributes to the formation of PGE2 involved in pain hypersensitivity and inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号