首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1860篇
  免费   147篇
  国内免费   4篇
  2021年   11篇
  2020年   7篇
  2019年   14篇
  2018年   18篇
  2017年   7篇
  2016年   16篇
  2015年   25篇
  2014年   34篇
  2013年   74篇
  2012年   77篇
  2011年   110篇
  2010年   51篇
  2009年   45篇
  2008年   88篇
  2007年   104篇
  2006年   103篇
  2005年   100篇
  2004年   119篇
  2003年   93篇
  2002年   86篇
  2001年   63篇
  2000年   51篇
  1999年   50篇
  1998年   31篇
  1997年   18篇
  1996年   17篇
  1995年   15篇
  1994年   12篇
  1993年   17篇
  1992年   37篇
  1991年   26篇
  1990年   24篇
  1989年   37篇
  1988年   23篇
  1987年   32篇
  1986年   30篇
  1985年   39篇
  1984年   22篇
  1983年   32篇
  1982年   24篇
  1981年   23篇
  1980年   24篇
  1979年   28篇
  1978年   22篇
  1977年   31篇
  1976年   22篇
  1975年   12篇
  1974年   10篇
  1973年   7篇
  1966年   8篇
排序方式: 共有2011条查询结果,搜索用时 15 毫秒
81.
Disappearance of Ca2+-induced phase separation in phosphatidylserine-phosphatidylcholine membranes has been studied under several conditions by monitoring electron spin resonance spectrum of spin-labeled phosphatidylcholine. The membranes were prepared in Millipore filters. Electron micrographs of the preparations showed formation of multilayered structures lined on the pore surface. The phase separation was disappeared when the membrane was soaked in non-buffered salt solution (100 ml KCl, pH 5.5). It was markedly contrasting that when the bathing salt solution was buffered no disappearance was observed. Disappearance of the phase separation was also observed when the Ca2+-treated membrane was transferred to acidic salt solutions (? pH 2.5) or to low ionic strength media (? 10 mM) buffered at pH 5.5, and then to the buffered salt solution (100 mM KCl, pH 5.5). These are due to replacement of Ca2+ by proton, proton-induced separation, followed by disappearance of the phase separation inthe buffered salt solution. Biological significance of the competition between Ca2+ and proton for the phase separation or domain formation in the membranes was emphasized.  相似文献   
82.
A reaction system suitable for testing the function of a stopped-flow apparatus of high performance was searched for. The reduction of 2,6-dichlorophenol-indophenol by l-ascorbic acid at pH 2.0 was recommended as the most practical test reaction. In due course of the study the reaction mechanism of the reduction was discussed.  相似文献   
83.
The nature of the interaction between Sendai virus and Sil mutant cells was examined by measuring a change in ESR spectrum of spin-labeled phosphatidylcholine molecules on the viral envelope. When spin-labeled virus was incubated with the Sil cells that had a reduced ability to respond to virus-induced cell fusion, interchange of the phospholipid molecules between viral envelope and cell surface membrane occurred to a smaller extent than that observed with parental cells. Moreover, the degree of the interchanging correlated with the degree of the fusion capacity of the mutant lines. The results show that the mutant cells carry such a lesion(s) on their surface membranes that the viral envelopes can hardly fuse into them.  相似文献   
84.
M Nakamura  S Ohnishi  H Kitamura  S Inai 《Biochemistry》1976,15(22):4838-4843
The structural change in erythrocyte membranes induced by antibody and complement was studied using phospholipid spin-labels. Sheep erythrocytes were labeled with phosphatidylcholine spin-label and various intermediate cells (erythrocyte-antibody complex (EA), EA bound with complement components from C1 to C7 (EAC1-7), EAC1-8, and EAC1-9) were prepared. Electron spin resonance spectra of EA, EAC1-7, and EAC1-8 were very similar to that of the erythrocytes, while that of EAC1-9 was markedly different. The overall splitting value for the lysed EAC1-9 (53 G) was much smaller than that for the erythrocytes (57 G), indicating a marked fluidization around the phosphatidylcholine label. The unlysed EAC1-9 membranes contained a limited fraction of the fluidized area. When EA was reacted with complement in the presence of 36% bovine serum albumin, the membranes were fluidized similarly to the lysed EAC1-9, although the hemolysis was largely blocked. The membranes of unlysed EAC1-9 prepared in isotonic (ethylenedinitrilo)tetraacetic acid were also fluidized, but to somewhat smaller extent. The role of C9 in the modification of erythrocyte membranes was also demonstrated using Mg2+ ghosts, which were prepared by hypotonic hemolysis in the presence of Mg2+. The membranes of Mg2+ ghost of EAC1-7 were markedly fluidized when bound with C8 and C9, but not affected by binding of C8 only. The component C8 was found to give a latent effect on the membranes that caused irreversible fluidization upon osmotic shock. The terminal component thus creates a fluidized area in the erythrocyte membranes through which small ions and molecules may diffuse more easily and the resulting osmotic unbalance may finally cause hemolysis.  相似文献   
85.
Summary Hepatoma cells grown in monolayer culture display certain alterations in their Mg-ATPase activity present on the cell surface as a function of time during a exponential growth. Levels of enzyme estimated biochemically and expressed as activity per cell increase as the cell population density increases. Histochemical investigation shows that Mg-ATPase activity is located intensively on the surface of cell contact and the activity is not encountered on the cell surface facing the free space. No enzyme activity is detected histochemically on the cell surface of sparse culture. Deposits of acidic polysaccharide are also seen on the surface of cell contact.  相似文献   
86.
Two distinct ferredosin-type iron-sulfur centers (designated as Centers S-1 and S-2) are present in the soulble succinate dehydrogenase in approximately equivalent concentrations to that of bound flavin. Both Centers S-1 and S-2 exhibit electron paramagnetic resonance absorbance in the reduced state at the same magnetic field (gz = 2.03, gy = 1.93, and gx = 1.91) with similar line shape. Center S-2 is reducible only chemically with dithionite and remains oxidized under physiological conditions. Thus, its functional role is unknown; however, thermodynamic and EPR characterization of this iron-sulfur center has revealed important molecular events related to this dehydrogenase. The midpoint potentials of Centers S-1 and S-2 determined in the soluble succinate dehydrogenase preparations are -5 +/- 15 mV and -400 +/- 15 mV, respectively, while corresponding midpoint potentials determined in particulate preparations, such as succinate-cytochrome c reductase or succinate-ubiquinone reductase, are 0 +/- 15 mV and -260 +/- 15 mV. Reconstitution of soluble succinate dehydrogenase with the cytochrome b-c1 complex is accompanied by a reversion of the Center S-I midpoint from -400 +/- 15 mV to -250 +/- 15 mV with a concomitant restoration of antimycin A-sensitive succinate-cytochrome c reductase activity. There observations indicate that, during the reconstitution process, Center S-I is restored to its original molecular environment. In the reconstitutively active succinate dehydrogenase, the relaxation time of Center S-2 is much shorter than that of S-1, thus Center S-2 spectra are well discernible only below 20 K (at 1 milliwatt of power), while the resonance absorbance of Center S-1 is detectable at higher temperatures and readily saturates below 15 K. Over a wide temperature range the power saturation of Center S-1 resonance absorbance is relieved by Center S-2 in the paramagnetic state, and the Center S-2 central resonance absorbance is broadened by Center S-1 spins, due to a spin-spin interaction between these centers. These observations indicate an adjacent location of these centers in the enzyme molecule. In reconstitutively inactive enzymes, subtle modification of the enzyme structure appears to shift the temperature dependence of Center S-2 relaxation to the higher temperature. Thus the EPR signals of Center S-2 are also detectable at higher temperature. In this system a splitting of the central peak of the Center S-2 spectrum due to spin-spin interaction was observed at extremely low temperatures, while this was not observed in reconstitutively active enzymes or in paritculate preparations. This spin-spin interaction phenomena of inactive enzymes disappeared upon chemical reactivation with concomitant appearance of the reconstitutive activity. These observations provide a close correlation between the molecular integrity of the enzyme and its physiological function.  相似文献   
87.
88.
Two distinct iron-sulphur centres of the 'HiPIP' (high-potential iron-protein) type are distinguished in both pigeon heart and ox heart mitochondria. These two species, although both are paramagnetic in the oxidized state, exhibit signals which differ in their detailed line shape, field position, and temperature- and power-dependence. They also exhibit different thermodynamic and kinetic behaviour and are located on opposite sides of the mitochondrial coupling membrane. One of these centres corresponds to Centre S-3. The other 'HiPIP'-type centre is removed readily from the mitochondrial membrane and its physiological function is not known.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号